ew! shareres, T3EWCLASS, $-!f JumpToHel pFile(hWndA pp%c wrdbasi c.hlp'%c0) $dlIres:wordres.dil:
HwBFY Programming with

Microsoft Word

Word Help Contents
WordBasic Statements and Functions
Conventions
Statements and Functions by Category
Statements and Functions Index

More WordBasic Information

What's New in WordBasic

Creating Dynamic Dialog Boxes

Key Examplesin WordBasic Help
Operators and Predefined Bookmarks
Error Messages

Toolbar Button Images and Numbers
Converting Word Version 2.x Macros
The Microsoft Word Developer's Kit
Microsoft Solution Providers

Using special characters in a document search

In aFileFind instruction, you can use special characters to search for documents by using approximate
criteria, instead of exact criteria. When you specify search criteria, you can use wildcard characters and
search operatorsto control a search in specific ways.

Character Meaning

? (question Match any single character. For

mark) example, specify " gr ?y" to
match both "gray" and "grey."

* (asterisk) Match any number of characters.

For example, specify "*. t xt" to
find all filesthat have the . TXT
extension.

" " (quotation Matches all the characters,

marks, Chr $ including spaces or punctuation,

(34)) within the quotation marks. For
example, specify Chr $(34) +
"nmodern dance" + Chr$
(34) tofind the phrase modern
dance.

\ (backslash) Treats the following character
(space, asterisk, question mark,
comma, ampersand, or tilde) asa
normal character. For example,
specify "\ ?" toindicate atrue
question mark.

, (comma) Logical OR. The information may
match any or all items, but it must
match at least one item.

For example, specify " dance,
noder n” to find al documents
that contain either "dance" or

"modern."
& (ampersand) Logical AND. Theinformation
or (space) must match al of theitemsin the
list.

For example, specify
"dance&noder n® or"dance
nmoder n" tofind all documents
that contain both words.

~ (tilde) Logical NOT. The information
must not match thisitem.
For example, specify " ~
nmoder n" to exclude files that
contain the word "modern."

Seedso
FileFind
Advanced search criteria

Advanced search criteria
If you set .PatternMatch to 1 in a FileFind, EditFind, or EditReplace instruction, you can specify the

following advanced search criteria.

Tofind Operator
Any single character ?

Any string of *
characters

One of the specified []
characters

Any single character [-]
in this range

Any single character [!]
except the
charactersinside the
brackets

Any single character [!x-Z]
except charactersin

the range inside the
brackets

Exactly n {n}
occurrences of the
previous character

or expression

Atleast n {n}
occurrences of the
previous character

or expression
Fromntom {n,m}
occurrences of the
previous character

or expression

One or more @
occurrences of the
previous character

or expression
Thebeginningof a <
word

Theend of aword >

Examples

"s?t" finds"sat,"
"set," and "sit.”
"s*d" finds"sad,"
"started,"” and "said.
"W io]n" finds
"win" and "won."
"[r-t]ight"
finds "right," "sight,
" and "tight." Ranges
must be in ascending
order.

"m'la]st" finds
"mist,” "most," and
"must," but not
"mast."

"t[!'ou] ck" finds
"tack" and "tick," but
not "tock" or "tuck."
"t[!a-njck"
finds "tock" and
"tuck," but not
"tack" or "tick."
"fe{2}d" finds
"feed" but not "fed."

"“fe{1,}d" finds
"fed" and "feed."

"10{1, 3}" finds
"10," "100," and
*1000."

"lo@" finds"lot"
and "loot."

"<(inter)" finds
"interesting” and
"intercept,” but not
"splintered."
"(in)>" finds
“in" and "within,"

but not "interesting.

Y ou can use parentheses around parts of the search criteriato indicate the order of evaluation and to group
parts of expressions, as shown in the previous examples.

To search for operators as if they were characters, precede them with a backslash (\). For example, to find
aquestion mark, specify .Find = ""\?" inan EditFind instruction.

One other operator that you can specify for .Replace in an EditReplace instruction is\num. This operator
rearranges expressions specified in .Find in the order specified by .Replace. If you specify . Find = "
(Newton) (Christie)" and.Replace = "\2 \1", thetext would change from "Newton
Chrigtie" to "Christie Newton."

Seedso

EditFind

EditReplace

FileFind

Finding and replacing special characters by using keyboard codes
Using specia characters in a document search

Finding and replacing specia characters by using keyboard codes

To find or replace special characters using an EditFind or EditReplace instruction, specify the following
codes for the .Find and .Replace arguments. Press sHIFT+6 for the * symbol and make sure to use
lowercase |etters.

Specia characters

To specify Specify For
Paragraph mark
)(1T
"Apt Findor .
Replace
Tab character
(=
)
B o Findor .
Replace
Annotation mark nat .Find
ANSI or ASCII "A0nnn" Findor .
characters wherennn isReplace
the character
number
Any character A Find
Any digit AT Find
Any letter "AgT .Find
Caret character ANt Findor .
Replace
Clipboard contents "Act .Replace
Text specified by . "Ag! .Replace
Find
Endnote mark "ne" .Find
Field "agt .Find
Footnote mark A .Find
Graphic "ng" Find
Breaks
To specify Specify For
Column break
(- Colurn Break:-
)
"Ant .Findor.
Replace
Line break
(+
)
AT Findor .
Replace
Manual page break
(e
)
"Am Findor .
Replace
Section break
(B nd of 5 ectiorssss:
)
il .Find
Hyphens and spaces
To specify Specify For

Em dash AL Findor .

Replace

En dash Azt JFind or .
Replace
Nonbreaking space
(+
)
st Findor.
Replace
Nonbreaking hyphen
-
)
Badash Findor .
Replace

Optional hyphen

-

)
)1

A Findor.
Replace
White space
(2
)
AW Find

Y ou cannot search for hyphens that Word inserted automatically with the Hyphenation command (Tools
menu).

Note

) (flyou omit the optional hyphen code, Word finds all matching text, including text with optional hyphens.
If you include the optional hyphen code, Word finds only words with optional hyphens in the same position.
For example, if you specify . Find = "type®-witer" Wordfinds"type-writer", but not
"typewriter".

) &hy number and combination of normal and nonbreaking spaces, tab characters, and paragraph marks.

See also
EditFind

EditReplace
Advanced search criteria

Auto Macros

By giving amacro a special name, you can run it automatically when you perform an operation such as
starting Word or opening a document. Word recognizes the following names as automatic, or "auto,"
macros.

Macro name When it runs

AutoExec When you start Word

AutoNew Each time you create anew
document

AutoOpen Each time you open an existing
document

AutoClose Each time you close a document

AUutoExit When you quit Word

Just like other macros, auto macros can be defined either globally or for a particular template. The only
exception is the AutoExec macro, which will not run automatically unlessit is stored in the Normal
template or a global template stored in the directory specified as the Startup directory.

Tip

Y ou can hold down the sHIFT key to prevent auto macros from running. For example, if you create a new
document based on a template that contains an AutoNew macro, you can prevent the AutoNew macro
from running by holding down sHiIFT when you click the OK button in the New dialog box (File menu) and
continuing to hold down sHIFT until the new document is displayed. In a macro that might trigger an auto
macro, you can use DisableAutoMacros to prevent auto macros from running.

Creating Dynamic Dialog Boxes

To create adynamic dialog box, you start with a standard dialog box definition created with Begin Dial og.
..End Didog. Y ou then add three elements to make the dialog box dynamic:

. A dialog function argument in the Begin Dialog instruction that calls the dialog function. The..
FunctionName argument matches the name of the dialog function.
. String identifiers for any dialog box controls that the dialog function acts on or getsinformation

from. Most of the instructions in a custom dialog box definition already include string identifiers for the
controls they define.

Note that you can also use numeric identifiers to refer to controlsin adialog box definition (0
(zero) for thefirst contral, 1 for the second control, and so on). Although this may improve performance

when adialog box contains many controls, instructions that use numeric identifiers are more difficult to
read than instructions that use string identifiers.

A dialog function. The dialog function responds to events and changes the appearance of the dialog
box All theinstructions that are carried out while the dialog box is displayed are either placed within this
function or in subroutines and user-defined functions called from this function.

The following topics describe WordBasi ¢ statements and functions used in dialog functions and provide

examples of their use. For more information, see Dialog Function Syntax.

DlgControlld()

DlgEnable, DIgEnablg()

DIgFilePreview, DIgFilePreview$()

DIgFocus, DIgFocus$()

DlgListBoxArray, DIgListBoxArray()

DlgSetPicture

DigText, DIgText$()

DlgUpdateFilePreview

DlgValue, DigVaug()

DIgVisible, DIgVisible()
For a complete discussion of creating dynamic dialog boxes, see Chapter 5, "Working with Custom Dialog
Boxes," in the Microsoft Word Developer's Kit.

Seealso
Dialog Function Syntax

Dialog Function Syntax
Function FunctionName(Control | D$, Action, SuppValue)
Series of instructions
FunctionName =
value

End Function

A dialog function is associated with a dialog box definition when FunctionName matches the .
FunctionName argument in a Begin Dialog instruction. By default, the dialog function returns O (zero)
when the user chooses the OK button, Cancel button, or a push button; areturn value of 0 (zero) causes
Word to close the dialog box. To keep the dialog box displayed and allow the user to carry out multiple
commands from the same dial og box, use the syntax FunctionName = value to set FunctionName to a
nonzero value. For an example of this technique, see DIgText Example.

A dialog function takes three required arguments.

Argument Explanation

ControlID$ Receives the identifier string of
the dialog box control associated
with a call to the dialog function.
For example, if the user selectsa
check box, the dialog functionis
called and the Control I D$
argument receives the identifier
for the check box.

Action Identifies the action that callsthe
dialog function. There are six
possible actions that can call the
dialog function, each with a
corresponding Action value. For
more information, see the table of
Action values, below.

SuppValue Receives supplemental
information about achangein a
dialog box control. The
information SuppValue receives
depends on the Action value and
on which control calls the dialog
function. For more information,
see the table of SuppValues,
below.

The following table describes each of the six actions that can call the dialog function.

Actionvalue Meaning

1 Corresponds to dialog box
initialization. Thisvalueis passed
before the dialog box becomes
visible.

2 Corresponds to choosing a
command button or changing the
value of adialog box control (with
the exception of typing in atext
box or combo box). When Action
is 2, Control| D$ corresponds to
the identifier for the control that
was chosen or changed.

3 Corresponds to achange in a text
box or combo box. Thisvalueis
passed when a control loses the
focus (for example, when the user
presses the TAB key to moveto a
different control) or after the user
clicksaniteminthelist of a
combo box (an Action value of 2

is passed first). Note that if the
contents of the text box or combo
box do not change, an Action
value of 3isnot passed. When
Actionis 3, ControlID$
corresponds to the identifier for
the text box or combo box whose
contents were changed.

4 Corresponds to a change of control
focus. When Actionis 4,

Control ID$ corresponds to the
identifier of the control that is
gaining the focus. SuppValue
corresponds to the numeric
identifier for the control that lost
the focus. A dialog function
cannot display a message box or
Word dialog box in response to an
Action value of 4.

5 Correspondsto an idle state. As
soon asthe dialog box is
initialized, Word continuously
passes an Action value of 5 while
no other action occurs. If the
dialog function respondsto an
Action value of 5, the dialog
function should return a nonzero
value. (If the dialog function
returns O (zero), Word continues to
send idle messages only when the
mouse moves.) When Action is 5,
ControlID$ isan empty string (*")
; SuppV aue corresponds to the
number of times an Action value
of 5 has been passed so far.

6 Corresponds to the user moving
the dialog box. Thisvalueis
passed only when screen updating
isturned off (using a
ScreenUpdating instruction). After
thisvalue is passed and the dialog
function ends, Word refreshes the
screen and then turns screen
updating back on. A dialog
function does not usually need to
respond to an Action value of 6,
but with it you can use the dialog
function to change what will be
displayed when the screen
refreshes. When Action is 6,
ControlID$ is an empty string (")
; SuppVaueisequal to 0 (zero).

The following table describes which SuppVa ue values are passed when Actionis 2 or 3.
Control SuppV alue passed

List box, drop-down Number of the item selected,
list box, or combo where O (zero) isthefirstitemin

box thelist box, 1 isthe second item,
and so on

Check box 1if selected, O (zero) if cleared

Option button Number of the option button

selected, where O (zero) isthe first
option button within agroup, 1is

Text box
Combo box

Command button

See also

the second option button, and so
on

Number of charactersin the text
box

If Actionis 3, number of
characters in the combo box

A valueidentifying the button
chosen. Thisvalueis not often
used, since the same information is
available from the ControlID$
value. If the OK button is chosen,
SuppValueis 1; if the Cancel
button is chosen, SuppVaueis 2.
The SuppValue for push buttons is
an internal number used by Word.
This number is not the same as the
numeric identifier for a push
button, but it does change if the
instruction that defines the push
button changes position within the
dialog box definition.

Creating Dynamic Dialog Boxes

Converting Word Version 2.x Macros
Overview

WW?2_ statements and functions

Working with paragraph marks

Modifying startup options

Error checking

Limitsin Word

Creating and displaying dialog boxes

Cutting and pasting text

Using SendKeys

Finding and replacing text

Searching for fields

Working with headers and footers

New formatting implementations

Replacing Windows API calls with new statements and functions
Issues of context when calling macros and subroutines
Taking advantage of global templates

Miscellaneous "gotchas'

Naming variables, subroutines and user-defined functions

Overview

Word converts the macros in aWord 2.x template the first time you open the template, create a new
document based on the template, or attach the template to a document using the Templates command (File
menu). (Note that Word 6.0 cannot convert Word 1.x macros directly; open Word 1.x templatesfirst in
Word 2.x, and then in Word 6.0.) After converting atemplate, you must save it to save the conversion. If
you don't save the template, Word converts the macros again the next time you use the template.

If you want complete control over converting macros (that is, if you don't want Word to automatically
convert your macros), you can convert your macros manually. To do so, open each macro in Word 2.x,
copy the code to a normal document, and save the document. In Word 6.0, open the document and in
either the Normal template or a new custom template, create a macro for each of your original macros,
then copy the text from the document into the macro editing window. Debug each macro to identify which
parts of your code should be changed to produce the same behavior you programmed in Word 2.x.

When Word converts your macros automatically, you may need to modify parts of them by hand to
complete the conversion. This topic attempts to identify areas of your macro to which you may need to pay
special attention to produce the behavior you want from your macro.

WW2 _ statements and functions

For improved compatibility, a number of Word 2.x WordBasic statements and functions have been carried
over to Word 6.0 and given the "WW2_" prefix (for example, WW2_CountMenultems() and
WW?2_EditFind). When the macro converter encounters one of these Word 2.x statements or functions, it

substitutes the WW2_ name.

WW2_ functions provide Word 2.x syntax, but they do not behave under Word 2.x assumptions. For
example, WW2_Insert adheres to the setting of the Smart Cut And Paste setting in Word 6.0, and
WW?2_EditFind must use Word 6 codes to search for special characters.

Hereisthe full list of WW2_ statements and functions:

WW2_ChangeCase
WW?2_ChangeRulerMode
WW2_CountMenultems()
WW?2_EditFind
WW2_EditFindChar
WW2_EditReplace
WW2_EditReplaceChar
WW2_FileFind
WW?2_FileTemplates
WW2_Files$()
WW?2_FootnoteOptions
WW2_FormatBordersAndShading
WW?2_FormatCharacter
WW?2_FormatDefineStyleChar
WW2_GetToolButton()
WW2_GetToolMacro$()
WW2_Insert
WW?2_InsertFootnote
WW?2_Insertindex
WW?2_|nsertSymbol
WW?2_|nsertTableOf Contents
WW?2_KeyCode

WW2_MenuMacro$()

WW2_MenuText$()
WW2_PrintMerge
WW?2_PrintMergeCheck
WW?2_PrintMergeCreateDataSource
WW2_PrintM ergeCreateHeader Source
WW?2_PrintMergeHel per
WW?2_PrintMergeSel ection
WW2_PrintMergeToDoc
WW?2_PrintMergeToPrinter
WW2_RenameMenu
WW2_RulerMode
WW2_TableColumnWidth
WW?2_TableRowHeight
WW2_ToolsHyphenation
WW?2_ToolsMacro
WW?2_ToolsOptionsGeneral
WW?2_ToolsOptionsK eyboard
WW?2_ToolsOptionsMenus
WW?2_ToolsOptionsPrint
WW?2_ToolsOptionsT ool bar
WW?2_ToolsOptionsView
WW?2_ToolsRevisionsMark

WW2_ViewZoom

Note that CommandValid() takes a string that specifies acommand name. Word 6 does not convert this
string to avalid Word 6 command name, nor does it append "WW2_." Check all occurrences of this
function in a converted macro to ensure the name of the command bei ng tested is valid (for example,
change "InsertBookmark" to "WW2_lnsertBookmark™ or "EditBookmark™).

Keep in mind the following details about the behavior of some Word 2.x and WW2_ commands compared
to the corresponding Word 6.0 commands.

. WW?2_Files$() returns the filename only, while the Word 6.0 Files$() function returns the path and
filename.
. WW?2_Insert has the same effect as the Word 6.0 Insert statement except when text is selected. If

the current selection includes a section break at the end of the selection, WW2_Insert overwritesit; the
Word 6.0 Insert statement does not. If aword is selected, including the space character following it,
WW?2_Insert replaces the trailing space character; the Word 6.0 Insert statement does not.

. Word 6.0 provides compatibility in find and replace macro operations by including the Word 2.x
versions of these statements as WW2_EditFind and WW2_EditReplace. Note that the Word 2.x special

character codes continue to work in WW2_EditFind and WW2_EditReplace. However, specifying ANSI
character 34 (straight quotation mark) as the find text in WW2_EditFind, WW2_EditReplace, EditFind, or
EditReplace in Word 6.0 finds both straight and "smart” quotation marks (ANSI 147 and 148); in Word 2.x
macros, ANSI 34 finds only straight quotation marks.

For more information on changes to finding and replacing, see Finding and replacing text.

The Word 2.x statement ViewHeaderFooter is supported in Word 6.0 as the
NormaIV|ewHeaderArea statement; however, you cannot display the Word 2.x dialog box with
NormalViewHeaderArea.

. The Word 2.x statement IconBarMode is supported in Word 6.0, but has no effect.

Some WW?2_ statements correspond to dialog boxes in Word 2.x. A subset of these statements cannot be
used to dispiay the Word 2.x dialog boxes in Word 6.0 (though the statements may still be used to set
options or return information through dialog records). Converted Word 2.x macros that attempt to display
adialog box associated with any of the following statements will need to be updated by hand.
NormalViewHeaderArea

WW2_EditFindChar

WW?2_EditReplaceChar
WW2_FormatDefineStyleChar
WW2_PrintMerge
WW?2_PrintMergeCheck
WW2_PrintMergeHel per
WW2_PrintMergeSelection
WW?2_PrintMergeToDoc
WW2_PrintMergeToPrinter
WW2_ToolsOptionsGeneral
WW2_ToolsOptionsK eyboard
WW2_ToolsOptionsMenus
WW?2_ToolsOptionsTool bar
WW?2_ToolsOptionsView

WW2_ViewZoom

Working with paragraph marks

In Word 2.x, the two ANSI characters 13 and 10 specified a paragraph mark. In Word 6.0, the single ANSI
character 13 represents a paragraph mark. Any Word 2.x macro that assumes the following:

para$ = Chr$(13) + Chr$(10)

will not work properly in aWord 6.0 document. Word 2.x macros often use this assumption to search for
paragraph marks or to test a selection to seeif it contains a paragraph mark. Changing this assumption in
any converted Word 2.x macro will remedy this incompatibility with Word 6.0 documents.

However, paragraph marks in Word 2.x and text-only documents opened in Word 6.0 are till equivalent
to ANSI characters 13 and 10; only when aWord 2.x or text-only document is finally saved in Word 6.0
format are the paragraph marks converted to ANSI character 13. If your macro needs to work on
documents in both formats, make sure to check the current format before setting the assumption for which
ANSI character or characters comprise a paragraph mark.

Modifying startup options

Startup options for Word 6.0 are now in WINWORDG.INI. Macros that specify a Word section
("Microsoft Word 2.0," "Microsoft Word,” "M SWord Text Converters,” or "M SWord Editable Sections”)
in a GetProfileString$() or SetProfileString instruction will return or set information in WINWORDG.INI
instéad of WIN.INT. Tf you need to return or set optionsin Word 2.x sections of WIN.INI, use
GetPrivateProfileString$() and SetPrivateProfileString, which alow you to explicitly speC|fy an INI file.

Error checking
Because error messages in Word 6.0 are more specific than those in Word 2.x, you may need to update
error-handling routines to trap new errors. For example, if the insertion point or selection isnot in atable,
the StartOfRow and EndOfRow statements will generate an error message. Also, keep the following points
in mind:

Routines that manipulate dialog boxes without using GetCurV alues may generate errorsin Word 6.

O that did not occur in Word 2.x.
. Word 6.0 now displays an error if an array variable specified in adialog box definition has not

been defined.

Limitsin Word

Y ou may want to fix assumptions your macros make about Word limits that have changed (for example,
the maximum number of open document windows has changed from nine to whatever number available
memory allows). A change to consider when converting Word 2.x macros is that the number of nesting
levelsfor Call instructions to other macros and subroutines has been reduced. But asin Word 2.x,
available memory often limits the number of nesting levels before a macro can reach the internal
maximum, around 9 in Word 6.0.

For more information on new limits and other changesin Word 6.0, see What's New in WordBasic and
Chapter 6, "Switching from a Previous Version of Word," in Microsoft Word Quick Results.

Creating and displaying dialog boxes

In Word 2.x, option buttons and check boxes are vertically centered within the rectangle defined by the
width and height arguments in OptionButton and CheckBox instructions. In Word 6.0, option buttons and
check boxes are aligned at the top of the rectangle. If the rectangle was larger than necessary in the Word
2.x macro, the option button or check box may be out of place when the dialog box definition is converted.
If necessary, paste the dialog box definition into the Dialog Editor and resize the controls.

In Word 6.0, list boxes no longer recognize empty strings. If amacro includes an empty string in an array
to be assigned to alist box, the list of entriesistruncated after the empty string. For example, if you create
the following array:

Li st Box1$(0) = "hell 0"
Li st Box1$(1) = ""
Li st Box1$(2) = "hell 0"

and then assign it to alist box in adialog box definition, no text will appear in the list box after "hello"
when the dialog box is displayed. To fix the dialog box, either eliminate the empty string from the array or
add a space to each empty string. For example:

Li st Box1$(1) = " "

In Word 6.0, a custom dialog box with no Cancel button cannot be closed using the dialog Control menu.
Two approaches can be taken to address this; Use the MsgBox command instead of a custom dialog box
(note that a message box can only display 256 characters), or include a Cancel button to the dialog box
definition and then create a dialog box function that hides the Cancel button on initialization.

In Word 2.x, input boxes displayed with InputBox$() set the focus on the OK button; to choose OK using
the keyboard, the user pressed ENTER, and to insert a new line break in the text box, the user pressed
SHIFT+ENTER. In Word 6.0, input boxes displayed with InputBox$() set the focus on the text box. When
the user presses ENTER, Word inserts a new line in the text box; to choose OK using the keyboard, the user
must press TAB to set the focus on the OK button and then press ENTER.

If you want to maintain the Word 2.x InputBox$() behavior in your macro, you need to create a custom
dialog box to display with a Dialog or Dialog() instruction instead of using InputBox$(). If you do use the
Word 6.0 InputBox$() function, you can make your macro more robust by evaluating the returned string to
ensure that it is usable in your macro, cleaning it up if the user inadvertently pressed ENTER while trying to
choose OK.

Cutting and pasting text

The Edit panel in the Options dialog box (Tools menu) contains a new editing option, Use Smart Cut And
Paste, that removes unneeded spaces when you delete text and adds spaces when you insert text. In macros
that delete, cut, or paste text, use ToolsOptionsEdit to control this option, making sure the setting of the
option corresponds to your macro's assumptions. For Word 2.x macros, the assumption will most likely be
that this feature is not available, so add the following instructions to your macro to make sure it behaves
the samein Word 6.0:

Sub MAI N

Di mdlg As Tool sOpti onsEdit

Get Cur Val ues dl g

reset = dl g. Smart Cut Past e

dl g. Smart Cut Paste = 0

Tool sOptionsEdit dlg

" Word 2.x macro instructions

Tool sOptionsEdit . Smart Cut Paste = reset

End Sub

Using SendKeys

The macro converter does not change the keystrokes specified in SendK eys statements to accommodate
changes to access keys for menus, menu items, and dialog box controlsin Word 6.0. For example, in Word
2.x, theinstruction

SendKeys " %©b"

displays the Bullets And Numbering dialog box (Tools menu). In Word 6.0, the same instruction displays
the Borders And Shading dialog box (Format menu). Search your converted Word 2.x macros for all
SendK eys instructions to verify that they will still function as expected in Word 6.0.

Finding and replacing text

The EditFind and EditReplace statements have been updated for Word 6.0. The new versions use different
values for .Direction and use the new .Wrap argument to control prompts (for details, see EditFind). Also,
afew of the character codes used when searching for and replacing special characters have changed (for
example, "*m" instead of "~d" for amanual page break).

For these reasons, Word 6.0 provides compatibility in find and replace macro operations by including the
Word 2.x versions of these statements as WW2_EditFind and WW?2_EditReplace. Note that the Word 2.x
special character codes continue to work in WW2_EditFind and WW2_EditReplace.

InaWord 2.x EditFind instruction, you set .Direction to 2 to search toward the end of the document and
prevent Word from displaying a prompt if the end of the document is reached. If there is a selection when
the search begins, Word 2.x searches the selection first, and then continues the search after the selection. A
WW2_EditFind instruction in Word 6.0 does not continue the search after the selection. Unless your
macro makes sure that there is no selection before the WW2_EditFind instruction is run, you may want to
rewrite the instruction using the Word 6.0 version of EditFind, setting .Direction to O (zero) and the new .
Wrap argument to 1.

The font name and ANSI code of symbols inserted using the Word 6.0 InsertSymbol command are hidden;
Word recognizes these symbols as ANSI character 40 (Ieft parenthesis). Be aware that converted Word 2.
X macros that search for left parentheses will aso find symbols inserted with InsertSymbol in Word 6.0
documents.

Searching for fields

In Word 2.x, fields are inserted with no space between the opening field character and the field name. In
Word 6.0, a space isinserted after the opening field character and before the closing field character. If you
have macros that search for specific fields and perform some action on them, you'll need to take thisinto
account. Consider the following macro converted from Word 2.x. Notice that in the find text, there isno
space between ~19 and DATE.
REM Unl i nkDat eFi el ds -- unlinks each DATE field in the docunent
Sub MAIN
St ar t Of Docunent
Edi t Fi ndCl ear Formatti ng
WA2_EditFind .Find = "~19DATE", .Direction = 2, .Format = 0, .MatchCase = 0
Wi | e Edit Fi ndFound()

Unl i nkFi el ds

WA2_EditFind .Find = "~19DATE", .Direction =2, .Format = 0, .MatchCase = 0
Wend
End Sub

Y ou should assume that documents contain fields with varying numbers of spaces after the opening field
character, especidly if the document began as a Word 2.x document. To account for this, the macro above
could be rewritten to include two loops: one for DATE fields with no space after the opening field
character and one for DATE fields with one or more spaces (*w) after the opening field character. Note
that he following macro uses the Word 6.0 versions of EditFind and EditReplace, in which you can specify
~d for afield character.
REM Unl i nkDat eFi el ds -- unlinks each DATE field in the docunent
Sub MAI N
Edi t Fi ndCl ear Formatti ng
Vi ewi el dCodes 1
EditFind .Find = "AdDATE", .Direction = 0, .Wap =1, .Format = 0, \
. MatchCase = 0
Whi | e Edit Fi ndFound()
Unl i nkFi el ds
EditFind .Find = ""dDATE", .Direction = 0, .Wap =1
Wend
EditFind .Find = ""d*"WDATE", .Direction = 0, .Wap =1
Wi | e Edit Fi ndFound()
Unl i nkFi el ds
EditFind .Find = ""d*"WDATE", .Direction = 0, .Wap =1
Wend
End Sub

Y ou should also be aware that there are four fields whose names have changed in Word 6.0. However,
when you open aWord 2.x document containing one or more of these fieldsin Word 6.0, Word does not
update the field names. The fields continue to work as before, but their names don't change to the Word 6.
0 names unless you edit the field codes. The following table lists these four fields.

Word 2.x Word 6.0

INCLUDE INCLUDETEXT
IMPORT INCLUDEPICTURE
FTNREF NOTEREF
GLOSSARY AUTOTEXT

If you have a macro that searches for one of these fields, you may want to add code that accounts for the possibility that both field
names appear in the same document.

Working with headers and footers

In Word 6.0, the most common way to work with headers and footersis to display them with the
ViewHeader statement in page layout view. One limitation of this method is that Word can only display
the headers and footers of pages that exist in the document (that is, pages that can be displayed in page
layout view).

To work with headers and footers for documents with little or no text (for example, atemplate on which
much longer book-like documents will be based), you should use the Normal ViewHeaderArea statement
to display any header or footer in the header/footer pane in normal view. The NormalViewHeaderArea
statement corresponds to the Word 2.x ViewHeaderFooter statement. The arguments are the same, and you
can use adialog record and GetCurV alues to return the current values of NormalViewHeaderArea;
however, in Word 6.0, you cannot display the Word 2.x ViewHeaderFooter dialog box.

The following to Word 6.0 macro instructions are equivalent:

Fi | ePageSetup .DifferentFirstPage = 1, .OGddAndEvenPages = 1
Nor mal Vi ewHeader Area . First Page = 1, .(OddAndEvenPages = 1

But in a document with no text or page breaks, the following instruction displays the odd header in the
header/footer pane in normal view:

Nor mal Vi ewHeader Area . Type = 4

while the following instruction can only display the first-page header in page layout view:
Vi ewHeader

When enough text is added to create two page breaks (or if page breaks are added using InsertBreak), a
ViewHeader instruction would be able to display the odd header in page layout view.

Macros converted from Word 2.x will automatically use the NormalViewHeaderArea statement, just as
they used ViewHeaderFooter before. To duplicate Word 2.x functionality in new Word 6.0 macros, you
should use NormalViewHeaderArea as well. If you want your Word 6.0 macro to use ViewHeader in page
layout view, regardless of the number of pages in the active document or template, write code to insert one
or two temporary page breaks, modify the headers and footers, and then remove the temporary page
breaks.

New formatting implementations

Word 6.0 has many new formatting features and has revised some Word 2.x formatting statements and
functions for greater usability. When converting Word 2.x macros, you may need to rewrite some code
that applies formatting if you want to duplicate Word 2.x formatting behavior. Here are some specific
situations you might look out for.

. Word 6.0 now has Superscript, Subscript, and Small Caps formats based on the typographical
information stored in the specified font. Word 2.x macros that created superscript and subscript text by
raising text and reducing its font size manually are converted to do the same in Word 6.0. However,
instructions that use this technique can be modified manually to take advantage of the new font formatting
capabilities of Word.
. The .LineSpacing argument of the Word 2.x FormatParagraph statement has been split into two
arguments in the Word 6.0 FormatParagraph statement: .LineSpacingRule and .LineSpacing. To specify
exact line spacing in Word 2.x, you would specify a negative value for the .LineSpacing argument (for
example, "-10 pt"). To apply the same formatting in Word 6.0, you can do one of two things: specify
Exactly (value 4) for .LineSpacingRule and a positive value for .LineSpacing (for example, "10 pt"); or
specify anegative value for the .LineSpacing argument (for example, "-10 pt"). In thisway, Word 2.x
instructions that apply this formatting are converted without error.

However, after Word 6.0 runs an instruction that assigns .LineSpacing a negative value, the value of .

LineSpacingRuleis set to 4 ("Exactly") and the value of .LineSpacing is changed to a positive value.

Therefore, if your macro contains any conditional statements (such as If...Then...Else or While...Wend)

that test for a negative .LineSpacing value in aWord 6.0 FormatParagraph dialog record, they will

always return false. Each conditional statement that tests for a negative .LineSpacing value should be

modified to test for either a positive .LineSpacing value, a .LineSpacingRule value of 4, or both,

depending on the information required.
. Word 6.0 provides two kinds of style: paragraph and character. The name of the current style,
returned by the StyleName$() function, depends on where the insertion point or selection is located. For
example, if aword is selected in aNormal paragraph and no character styles are applied to the word,
StyleName$() returns "Normal." However, if the word has a character style, such as ArialBold, applied to it,
StyleName$() returns "ArialBold." To make sure StyleName$() returns the underlying paragraph style,
regardless of the any character styles applied to the current selection, use the following code:

Edi t Bookmark "t np"

Sel Type 1

reset$ = Styl eName$()

Styl e "Default Paragraph Font"

parastyl e$ = Styl eNane$()

Style reset$

Edi t Goto "t np"

Edi t Booknmark "tnp", .Delete

. In Word 6.0, the Organizer command can be used in macros to copy multiple styles, AutoText
entries, toolbars, and macros; a macro simply establishes aloop based on the number of items counted by a
function such as CountStyles() and runs an Organizer instruction for each item.
AsinWord 2.x, macros in Word 6.0 can use the FormatStyle statement to merge all stylesto or from
documents or templates using the .FileName, .Source, and .Merge arguments. Word 2.x macros that use
this method are converted with little or no modification into Word 6.0.

Replacing Windows API calls with new statements and functions

Some new WordBasic statements and functions provide the functionality of common Windows API calls
used in Word 2.x with Declare statements. When converting a macro from Word 2.x to Word 6.0, you
might consider which Windows API calls the macro made before could be converted to new built-in
WordBasic functionality.

For example, the application control statements such as AppSize, AppMove, and AppMinimize can be
used in Word 6.0 to control the state of any Windows-based application, not just Word. If your macro
attempts to modify the state of non-Word applications using Windows API calls, you might consider
replacing the API calls with the corresponding WordBasic statements. Also, new statements such as
AppGetNames, AppCount(), and ApplsRunning() extend the ability of macros to modify or return
information about the entire Windows environment.

AppSendMessage is a powerful statement added to Word 6.0 that allows macros to send any Windows
API message and its associated parameters (described in the Microsoft Windows 3.1 Software
Development Kit) to any running Windows-based application. If you are converting a Word 2.x macro that
attempted to do the same thing using Windows API function calls, you can modify the macro to take
advantage of AppSendM essage.

Word 6.0 has added two statements, ScreenUpdating and ScreenRefresh, to provide some display control
that could only be found in calls to the Windows API EchoOff function. Note that ScreenUpdating does
not provide the same functionality as EchoOff; toolbars can be hidden and displayed, the status bar can be
updated, message boxes can prompt for information, and so on. If you have a Word 2.x macro that used
the Windows API EchoOff function, you might consider using the Word 6.0 screen updating statements
instead if they satisfy the needs of the macro.

In Word 6.0, you can use GetPrivateProfileString$() and SetPrivateProfileString to return and modify
settingsin any initialization file: WIN.INI, WINWORDG.INI, an initialization file for any other Windows-
based application, or even your own initialization file such as MACROVAR.INI. If you are converting a
Word 2.x macro that uses Windows API calls to functions of the same name, you might consider whether
the built-in statement and function can be used to accomplish the same task.

Issues of context when calling macros and subroutines

In both Word 2.x and Word 6.0, you can call one macro from another by using a ToolsMacro instruction
or by using the following syntax:

[Call] MacroName[.SubName] [ArgumentList]

Occasionally, more than one macro with the specified name are available to run. In such cases, Word 6.0
uses different rules than Word 2.x when deciding which macro to run. In general, Word 2.x resolves name
conflictsin favor of the active template and Word 6.0 resolves name conflictsin favor of the template that
contains the calling macro. An example will illustrate this point.

Consider thetemplate MY .DOT containing the macro Welcome.

"Wl come macro (MY. DOT)

Sub Main

MsgBox "I amthe Wl come macro in MY.DOT"

End Sub

Consider a macro of the same namein NORMAL.DOT.
"Vl come macro (NORMAL. DOT)

Sub Mai n

MsgBox "I amthe Wel cone nacro in NORVAL. DOT"
End Sub

Now consider another macro in the Normal template which creates a document based on MY .DOT, and
then runs Welcome.

"Macro in NORMAL. DOT that runs NORMAL. DOT version of Wl cone

Sub Mai n

Fi | eNew . Tenpl ate = " My. DOT"

Wl cone

End Sub

When the Welcome macro runs, MY .DOT is active. In Word 2.x, the MY.DOT version of Welcome runs
because naming conflicts are resolved in favor of the active template. In Word 6.0, where the version in
the template containing the calling macro takes precedence over the version in the active template, the
NORMAL.DQOT version of Welcome runs.

How can you override this behavior in Word 6.0 macros without renaming all of your macros and
subroutines to use unique names? There are two ways: use ToolsMacro instead of Call, or include the
WW?2CallingConvention statement.

If you want to run the main subroutine of a macro in the active template regardless of which template
contains the calling macro (and you don't need to pass any values), use a ToolsMacro instruction and set .
Show to 3 (the value for active template context).

"Macro in NORMAL. DOT that runs MY.DOT version of Wl cone

Sub Main

Fi | eNew . Tenpl ate = " M. DOT"

Tool sMacro . Nane = "Wl conme", .Show = 3, .Run

End Sub

Note that whenever you call amacro with ToolsMacro, it's agood ideato specify .Show. Otherwise, the
context will be determined by whatever context was last selected in the Macro dialog box. Thisis different
from the Word 2.x version of ToolsMacro, where, if you omitted .Show, Word looked for the macro first
in the active template, then in the Normal template, and finally in built-in commands.

Use WW2CdlingConvention if you want Word 6.0a to resolve naming conflicts the same way Word 2.x
resolved them. With WW2CallingConvention, your macros can use Call to call macros or subroutines
within macros in an active template if a macro by the same name already exists in the calling template.

Y ou must include WW2CallingConvention if you want to pass values to a macro with a conflicting name
that you might otherwise call with a ToolsMacro statement that has .Show set to 3, as described above.

Note

The WW2CallingConvention statement is an addition to Word 6.0a. Note that anyone using a macro that
contains WW2CallingConvention must also have Word 6.0a for the macro to perform as intended.
Including a CommandValid() check in your macros that include WW2CallingConvention will prevent a
user from trying to run the new statement when it is not available in their version of Word. For more
information, see WW2CallingConvention.

Taking advantage of global templates

If you are converting a complex suite of macros in multiple templates from Word 2.x to Word 6.0, you
should consider taking advantage of global templatesin Word 6.0 for the following reasons:

. In Word 2.x, it was common practice to distribute macros in atemplate that ran a process using
MacroCopy to copy some or al of the macros to auser's Normal template so those macros would be
available at all times. In Word 6.0, you need only distribute atemplate containing all of your macros and
instruct the user to load the template as a global template, using the Templates And Add-ins dialog box (File
menu). With global templates, you don't have to touch your user's Normal template.

- If you distributed multiple Word 2.x templates, each with its own set of macros, you can
reorgani ze those templates to take advantage of global templates. The macros for manipulating a new
document based on any given template do not need to be stored in the specific template; rather, they can all
reside in one authoritative global template. Y ou can also avoid cross-template naming conflicts by storing
macros in one global template.

- The change from juggling templatesin Word 2.x to loading a single global template in Word 6.0 to
automatically customize a user's Word environment requires some recoding and reorganizing of existing
Word 2.x template suites. However, the global-template model for customizing Word will pay off by giving
converted Word 2.x templates long-term stability in Word 6.0 and later versions.

Miscellaneous "*gotchas™

L ook for the following assumptions in your Word 2.x macros when you convert them to Word 6.0. A
change in Word 6.0 behavior may cause your macro to behave unexpectedly or incorrectly if it operates
under one of these conditions.

- The predefined bookmarks "\Para" and "\Page" no longer select the last paragraph mark in a
document if that paragraph mark is adjacent to the rest of the bookmark. For example, in Word 2.x, an
EditGoto instruction that specified "\Page" would select the last paragraph mark in the document if the
insertion point or selection wasin the last page; in Word 6.0, the paragraph mark is excluded. Y ou need to
modify a converted Word 2.x macro if it continues after such an instruction with the assumption that the
paragraph mark is part of the selection.
- In Word 2.x, if your macro used FileSaveAs to save the active document in afile format other than
Word Document, Word saved the new version of the file but |eft the original active document active. In
Word 6.0, Word saves the new version of the file, closes the original active document (if it had already been
saved), and makes the new version of thefile in the foreign format the active document.

If your converted Word 2.x macro assumes that any editing done after saving afilein aforeign format

is being done on the original Word Document file, it will behave incorrectly; it will actually modify the

content of the foreign-format file, which is active. Modify your Word 2.x macro in Word 6.0 to close

the foreign-format file and re-open the original Word Document file if it needs to continue modifying

the Word Document version of the file.

A macro that includes an OnTime instruction will run the specified macro regardless of whether

Word is the active application when the specified time occurs. Word 2.x, if the specified time passed while
Word was inactive, Word ran the macro as soon as it became the active appllcatlon Any Word 2.x macro
that assumed Word would be the active application when the specified macro ran as aresult of OnTime
should be modified to work with the new assumption or use another kind of delay routine.

Naming variables, subroutines and user-defined functions

Y ou may need to change names of variables, subroutines, and user-defined functions if the names have
become reserved words in Word 6.0 (such as statement or function names).

Y ou cannot call asubroutine or user-defined function stored in another macro if the name of the
subroutine or function is the same as the name of an argument for a WordBasic statement that corresponds
to adialog box. For example, if you have amacro called "Library” that contains a subroutine called
"Wrap," you cannot call the subroutine from another macro in the same template. The instruction

Li brary. Wap

in another macro generates an error because .Wrap is aan argument of the EditFind statement.

If you locate aWord 2.x macro that contains a subroutine or user-defined function with a name that has
become a reserved word, you should change the name of the subroutine or function to avoid the error
described above.

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ClearFormField Example

This exampleisintended to run when the focus moves to atext form field. If the user moves to the form
field using the TAB key, thereby selecting its contents, the condition Get Sel St art Pos() <> Get Sel EndPos
() istrue and Word clears the form field. If the user clicks the form field with the mouse, the condition is
false and Word takes no action.

I f GetSel EndPos() <> Get Sel StartPos() Then C ear FornFi el d

8'%355% gt | | | |
thetext in atext form field selected in a protected form document. ClearFormField behaves like the
BACKSPACE key. Note that in an unprotected form document, ClearFormField del etes the selected text
form field (unless the form field was sel ected while the document was protected, in which case the form
field's text is cleared, and the form field is not deleted). An error occursif atext form field is not selected,;
the statement cannot be used to clear adrop-down or check box form field.

Seedso

Forms Statements and Functions
SetFormResult

TextFormField

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ConvertObject Example
This example changes the display of the selected embedded object to an icon stored in PROGMAN.EXE.

Convert Qoj ect .lconNunber = 28, .lconFilenane = "PROGVAN. EXE', \
.Caption = "Caption Text", .Displaylcon =1

ConvertObject

Example
ConvertObject [.IconNumber = number] [, .ActivateAs = number] [, .IconFilename = text] [, .
Caption = text] [, .Class = text] [, .Displaylcon = number]

Converts the selected embedded object from one class to another, alows a different server application to
edit the object, or changes how the object is displayed in the document. The arguments for the
ConvertObject statement correspond to the optionsin the Convert dialog box (Object submenu, Edit
menu).
Argument Explanation
.IconNumber If .Displaylconissettol, a

number corresponding to theicon

you want to use in the program file

specified by .IconFilename. Icons

appear in the Change Icon dialog

box (Object command, Insert

menu): O (zero) correspondsto the

first icon, 1 to the second icon, and

so on. If omitted, the first (default)

iconis used.
ActivateAs Specifies whether Word converts

or setsthe server application for

the selected object:

0 (zero) Convertsthe selected object to
the object type specified by .Class.

1 Usesthe server application specified
by .Class to edit the object. Note that
this setting appliesto all objects of
the selected type and that Word uses
the specified server application when
inserting objects of the selected type.

JconFilename If .Displaylcon isset to 1, the path
and filename of the program filein
which theicon to be displayed is
stored.

.Caption If .Displaylconissetto 1, the
caption of theicon to be displayed,;
if omitted, Word inserts the name
of the object.

.Class A class name specifying the object
type to convert to or the server
application for editing the object,
depending on the setting for .
ActivateAs. The class namefor a
Word document is Word.
Document.6 and a Word pictureis
Word.Picture.6.

To look up other class names,
insert an object of thetypeto
convert to in a document and view
the field codes; the class name of
the object follows the word
"EMBED."

.Displaylcon Specifies whether or not to display
the object as an icon:

0 (zero) or omitted Object is not
displayed as anicon.
1 Objectisdisplayed asanicon.

Seeaso
Object Linking and Embedding Statements and Functions
InsertObject

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

CountDocumentVars() Example

This exampl e resets each document variable in the active document to an empty string ("). If the
document contains no variables, a message box is displayed.
numvars = Count Docunent Var s()
If nunVars > 0 Then
For i = 1 To Count Docunent Vars()
name$ = Get Docunent Var Name$(i)
Set Docunent Var nane$,
Next
El se
MsgBox "No docunent variables to reset."
End | f

8oun ocume@tv S%rs()

ocument
m&s the number of document variables set with SetDocumentVar or SetDocumentVar() in the active
document.

Seedso

Documents, Templates, and AddIns Statements and Functions
GetDocumentVar$()

GetDocumentV arName$()

SetDocumentVar

DWWN Rifftuceure . _ . o . -
Resetsthe ounéjarlec in aWord Picture object to include al drawing objects in the picture editing
window. If the active window is not a picture editing window, an error occurs.

Seeaso

Drawing Statements and Functions
DrawlnsertWordPicture
FileClosePicture

FieldSeparator$, FieldSeparator$()
FieldSeparator$ Separator$

FieldSeparator$()

The FieldSeparator$ statement sets the separator character, Separator$, Word recognizes when dividing
text among cellsin a TextToTable operation. For example, if you have datain which the items of
information are delimited by percent signs (%), you can use the instruction Fi el dSeparator$ "% before
converting the data to atable. The FieldSeparator$() function returns the current separator character.

Seedso
Tables Statements and Functions
TextToTable

Iﬂl‘b%@fél
g the picture edm ng window and embeds a Word Picture object in the document.

Seedso
Drawing Statements and Functions
DrawResetWordPicture

FormatBullet

FormatBullet [.Points = number] [, .Color = number] [, .Alignment = number] [, .Indent = number or
text] [, .Space = number or text] [, .Hang = number] [, .CharNum = number] [, .Font = text]

Adds bullets to the selected paragraphs. The arguments for the FormatBullet statement correspond to the
options in the Modify Bulleted List dialog box (Bulleted tab, Bullets And Numbering command, Format
menu). Y ou cannot display this dialog box using a Dialog or Dialog() instruction.

Argument Explanation

.Points The size of the bullets, in points.

.Color The color of the bullets (for alist
of colors, see CharColor).

Alignment Specifies an alignment for the

bullets within the space between
the left indent and the first line of
text; takes effect only if .SpaceisO
(zero):
0 (zero) or omitted Left
1 Centered
2 Right
.Indent The distance between the left
indent and thefirst line of text, in
points or a text measurement.
.Space The distance between the bullet
and the first line of text, in points
or atext measurement.

.Hang If 1, applies a hanging indent to
the selected paragraphs.
.CharNum The sum of 31 and the number

corresponding to the position of
the symbol in the Symbol dialog
box (Insert menu), counting from
left to right. For example, to
specify an omega (), whichis at
position 56 on the table of symbols
in the Symbol font, set .CharNum
to 87.

Font The name of the font containing
the symbol. Names of decorative
fonts appear in the Font box in the
Symbol dialog box.

Seedso

Bullets and Numbering Statements and Functions
CharColor

FormatBulletsAndNumbering
FormatHeadingNumber

FormatMultilevel

FormatNumber

FormatHeadingNumber

FormatHeadingNumber [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number]
[, After = text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent =
number or text] [, .Space = number or text] [, .Hang = number] [, .RestartNum = number] [, .Level =
number] [, .Font = text] [, .Strikethrough = number] [, .Bold = number] [, .Italic = number] [, .

Underline = number]

Applies numbersto all paragraphs in the document formatted with one of the nine built-in heading level
styles, or changes numbering options for a specified heading level. The arguments for the
FormatHeadingNumber statement correspond to the options in the Modify Heading Numbering dialog box
(Heading Numbering command, Format menu).

Argument

.Points, .Color, .Font, .
Strikethrough, .Bold, .
Italic, .Underline
.Before, .After, .

Alignment, .Indent, .
Space, .Hang

.Type

StartAt

.Include

.RestartNum

.Level

See also

Explanation

Apply character formatting to
numbers at the specified level. For
argument descriptions, see
FormatFont.

Set options for numbers at the
specified level. For argument
descriptions, see FormatNumber.
Specifies aformat for numbering
headings at the specified level:
O(zero) 1,2,3,4

1 LI LIV

2 iy il iv

3 AB,CD

4 abcd

5 1s,2nd, ...

6 One, Two, ...

7 First, Second, ...

The number for the first heading in
each sequence of headings of the
specified level. If .Typeis3or4,.
StartAt corresponds to the position
in the alphabet of the starting
letter.

Specifies whether to include

numbers and position options from

the previous headings for numbers
at the specified level:

0 (zero) Includes neither numbers nor
postlon Optl ons.

1 Includes a series of numbers from
higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher-
level headings and position options
from the previous level.

If 1, restarts heading numbering at

each new section.

A number from 1 through 9

corresponding to the heading level

whose numbering options you
want to change.

Bullets and Numbering Statements and Functions

FormatBullet

FormatHeadingNumbering

FormatMultilevel
FormatNumber

FormatMultilevel

FormatMultilevel [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number] [, .
After = text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent = number
or text] [, .Space = number or text] [, .Hang = number] [, .Level = number] [, .Font =text] [, .
Strikethrough = number] [, .Bold = number] [, .Italic = number] [, .Underline = number]

Applies multilevel list numbers to the selected paragraphs or changes numbering options for a specified
level. The arguments for the FormatMultilevel statement correspond to the options in the Modify
Multilevel List dialog box (Multilevel tab, Bullets And Numbering command, Format menu). Y ou cannot
display this dialog box using a Dialog or Diaog() instruction.
Argument Explanation
Level A number from 1 through 9

corresponding to the heading level

whose numbering options you

want to change.

Note that if you specify .Level, the

optionsyou set in the

FormatMultilevel instruction are

not applied. To apply the settings,

include a second FormatMultilevel

instruction in which .Level is not

specified.
.Points, .Color, .Font,. Apply character formatting to
Strikethrough, .Bold, . numbers at the specified level. For

Italic, .Underline individual argument descriptions,
see FormatFont.

.Before, .After, . Set options for numbers at the

Alignment, .Indent, . specified level. For argument

Space, .Hang descriptions, see FormatNumber.

.Type Specifies aformat for numbering

headings at the specified level:

O(zero) 1,2,3,4

LT, IV

i, ii, i, iv

A,B,C,D

abcd

1st, 2nd, ...

One, Two, ...

First, Second, ...

StartAt The number for the first heading in
each sequence of headings of the
specified level. If .Typeis3or 4, .
StartAt corresponds to the position
in the alphabet of the starting
letter.

Include Specifies whether to include
numbers and position options from
the previous headings for numbers
at the specified level:

0 (zero) Includes neither numbers nor
position options.

1 Includesaseries of numbersfrom
higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher
level-headings and position options
from the previous level.

~No b~ wWN R

Seedso

Bullets and Numbering Statements and Functions
FormatBullet

FormatBulletsAndNumbering

FormatHeadingNumber
FormatNumber

FormatNumber

FormatNumber [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number] [, .After
=text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent = number or
text] [, .Space = number or text] [, .Hang = number] [, .Font = text] [, .Strikethrough = number] [, .
Bold = number] [, .Italic = number] [, .Underline = number]

Numbers the selected paragraphs. The arguments for the FormatNumber statement correspond to the
options in the Modify Numbered List dialog box (Numbered tab, Bullets And Numbering command,
Format menu). Y ou cannot display this dialog box using a Dialog or Dialog() instruction.
Argument Explanation

.Points, .Color, . Apply character formatting to

Font, . numbers at the specified level. For

Strikethrough, . argument descriptions, see

Bold, .Italic, . FormatFont.

Underline

.Before Thetext, if any, you want to
appear before each number.

.Type Specifies aformat for numbering
lists:

O(zero) 1,2,3,4

N IRTTRLY;

2 iy, i, iv

3 ABCD

4 abcd

After The text, if any, you want to
appear after each number.

StartAt The number for the first selected
paragraph. If .Typeis3or4,.
StartAt corresponds to the position
in the alphabet of the starting
letter.

Include Specifies whether to include
numbers and position options from
the previous headings for numbers
at the specified level:

0 (zero) Includes neither numbers nor
position options.

1 Includesaseries of numbers from
higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher-
level headings and position options
from the previous level.

Alignment Specifies an alignment for the
numbers within the space between
the left indent and the first line of
text; takes effect only if .SpaceisO
(zero):

0 (zero) or omitted Left

1 Centered

2 Right

Indent The distance between the left
indent and the first line of text, in
points or a text measurement.

.Space The distance between the number
and the first line of text, in points
or atext measurement.

.Hang If 1, applies a hanging indent to
the selected paragraphs.

Font The font to apply to the numbers.

Seeaso

Bullets and Numbering Statements and Functions

FormatBullet
FormatBulletsAndNumbering
FormatHeadingNumber
FormatMultilevel

FormShading, FormShading()
FormShading [On]
FormShading()
The FormShading statement controls shading for form fieldsin the active document.
Argument Explanation
On Specifies whether to display form
fields with or without shading.
1 Displaysform fields with shading.
0 (zero) Displaysform fields without

shading.
Omitted Toggles form-field shading.

The FormShading() function returns O (zero) if form fields are not shaded and -1 if they are.

Seedso
Forms Statements and Functions
FormFieldOptions

GetDocumentVarName$()
GetDocumentVarName$(V ariableNumber)

Returns the name of a document variable set with SetDocumentVar or SetDocumentVar().
Argument Explanation
VariableNumber The number of the document

variable, from 1 to the total

number of document variables

stored in the active document (you

can obtain the total using

CountDocumentVars()).

For an example, see CountDocumentVars() Example.

Seedso

Documents, Templates, and AddIns Statements and Functions
CountDocumentVars()

GetDocumentVar$()

SetDocumentVar

Im@ettﬁnﬁl%abak
Inserts a section break with the same formatting as the section containing the insertion point.

Seedso

Section and Document Formatting Statements and Functions
InsertBreak

InsertColumnBreak

InsertPageBreak

L ockDocument, LockDocument()
LockDocument [Lock]

L ockDocument()

The LockDocument statement adds or removes read-only protection for an entire master document or one
of its subdocuments. If the insertion point is within a master document but not within a subdocument,
LockDocument locks or unlocks the entire document. If the insertion point is within a subdocument,
LockDocument locks or unlocks the subdocument only.

Argument Explanation

Lock Specifies whether to add or
remove read-only protection for
the subdocument or master
document:

0 (zero) Removes read-only protection.
Note that if you unlock an entire
master document, Word unlocks all
subdocuments that were previously
locked.

1 Addsread-only protection.

Omitted Toggles read-only protection.

The LockDocument() function returns -1 if the subdocument or master document is read-only and O (zero)
if it is not. Note that when the insertion point isin a subdocument, LockDocument() returns information
about the read-only state of the subdocument only, not of the entire master document.

Seedso

Environment Statements and Functions
ToolsProtectDocument
ToolsProtectSection
ToolsUnprotectDocument

Magnifier, Magnifier()
Magnifier [On]
Magnifier()
The Magnifier statement changes the mouse pointer from the standard pointer to a pointer resembling a
magnifying glass, or vice versa, in print preview. When the mouse pointer is a magnifying glass, the user
can zoom in on a particular area of the page or zoom out to see an entire page or pages.
Argument Explanation
On Specifies the mouse pointer to

display in print preview:

0 (zero) Displaysthe standard pointer.

1 Displaysthe magnifying glass

pointer.
Omitted Toggles the mouse pointer.

The Magnifier() function returns -1 if the mouse pointer is amagnifying glass and 0 (zero) if it isthe
standard pointer.

Seedso

View Statements and Functions
FilePrintPreview

ViewZoom

Mii@msﬁﬁgamnﬂmfo
Runs Microsoft System Info, which displays information about the current operating environment.

Seedso

Environment Statements and Functions
Applnfo$()

GetSysteminfo

NormalViewHeaderArea

NormalViewHeaderArea[.Type = number] [, .FirstPage = number] [, .OddAndEvenPages = number]
[, .HeaderDistance = text] [, .FooterDistance = text]

Opens the header/footer pane (normal and outline views) or displays the header or footer area (page layout
view) and sets options for headers and footers. Word version 6.0 preserves the ability to display the
header/footer pane so you can edit any type of header or footer, regardless of the number of pagesin a
document, and so the spelling checker can highlight misspelled wordsin a header or footer.

The arguments for the Normal ViewHeaderArea statement correspond to the options in the Header/Footer
dialog box in Word version 2.x. Note that these options are usually set using FilePageSetup in Word
version 6.0. Although you can retrieve information from the NormalViewHeaderArea dialog record, you
cannot use this statement to display the Word version 2.x dialog box.
Argument Explanation
.Type Specifies whether to display the

header or footer area. The possible

values of .Type depend on the

settings of .FirstPage and .

OddAndEvenPages.

If both .FirstPage and .

OddAndEvenPages are set to 0

(zero):

0 (zero) Header

1 Footer

If .FirstPageissettoland.

OddAndEvenPagesisset to 0

(zero):

0 (zero) Header

1 Footer

2 First header

3 First footer

If .FirstPageis set to O (zero) and .

OddAndEvenPagesis set to 1:

0 (zero) Even header

1 Even footer

2 Odd header

3 Odd footer

If both .FirstPage and .

OddAndEvenPages are set to 1.

0 (zero) First header

1 First footer

2 Evenheader
3 Evenfooter
4 Odd header
5 Odd footer
FirstPage If 1, allows a header or footer for

the first page that differs from the
rest of the pages in the section.
.OddAndEvenPages If 1, allows one header or footer
for even-numbered pages and a
different header or footer for odd-

numbered pages.

.HeaderDistance The distance from the top of the
page to the header.

.FooterDistance The distance from the bottom of
the page to the footer.

Seeaso

View Statements and Functions

FilePageSetup

ViewFooter

ViewHeader

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

PathFromMacPath$() Example

In Word for Windows, this example returns the path and filename "\ HD80\ Reports\ !FinalRe.por".
wi npat h$ = Pat hFr omvacPat h$(" HD80: Reports: Fi nal Report")

PathFromM acPath$()

Example
~PathFromM acPath$(Path$)

Converts the Macintosh path and filename specified by Path$ to avalid path and filename for the current
operating system.

In Windows, each directory name and filename may contain up to eight characters followed by an optional
filename extension (a period and up to three characters). When converting a Macintosh path to avalid
Windows path, Word does the following to each Macintosh directory name and filename:

- Removes spaces.

- Adds an exclamation point (!) before the directory name or filename if spaces or extra characters
are removed.

- If the directory name or filename islonger than eight characters, adds a period and removes extra
charactersto form avalid Windows directory name or filename with an extension; for example, the
Macintosh directory name "Employee Addresses’ becomes the Windows directory name "!Employe.ead".
- Uses the first period, if any, to determine where the extension begins in the Windows directory
name or filename, removing any unusable characters; for example, the Macintosh filename "PC text file.
text" becomes the Windows filename "! PCtextf.tex".

- If there is more than one period, removes al characters between the first and the last period; for
example, the Macintosh filename "chapterl.rev.3" becomes the Windows filename "!chapter.3".

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

SelectionFileName$() Example

This example checks to seeif the active window is a macro-editing window. If not, the example checks the
last character in the text returned by SelectionFileName3$(). If the last character isabackslash (\),
indicating the document has never been saved, a message is displayed.
a$ = Sel ectionFil eNarme$()
I'f Sellnfo(27) = -1 Then
MsgBox "A macro-editing windowis active."
Got o bye
End | f
If Right$(a$, 1) = "\" Then
MsgBox "The active docunment has never been saved."
End | f
bye:

ectionFileN
SCTPACINE) | -
s the full path and filename of the active document if it has been saved. If the document has not
been saved, or if the active window is a macro-editing window, SelectionFileName3() returns the current

path followed by a backslash (\).

Seedso

Documents, Templates, and AddlIns Statements and Functions
FileName$()

FileNamelnfo$()

GetDirectory$()

WW2CallingConvention, WW2CallingConvention()
WW2CdlingConvention [On]
WW2CallingConvention()

The WW2CallingConvention statement (Word 6.0a only) controls how Word resolves naming conflicts
when one macro calls another. A conflict arisesif a macro with the specified name exists both in the active
template and the template containing the calling macro. In Word 2.x, the macro in the active template runs.
In Word 6.0, the macro in the calling template runs.

By including a WW2CallingConvention instruction at the beginning of a macro, you can temporarily
revert to Word 2.x behavior. When the macro containing the WW2CallingConvention instruction ends,
Word 6.0 behavior is restored.
Argument Explanation
On Specifies how Word resolves
naming conflicts:
0 (zero) Word 6.0 behavior (in favor of
the calling template)
1 or omitted Word 2.x behavior (in favor
of the active template)

The WW2CallingConvention() function returns -1 if the Word 2.x calling convention isin effect and 0
(zero) if itisn't.

In general, you should use WW2CallingConvention only if you already have a suite of templates that rely
on Word 2.x behavior to resolve naming conflicts. This statement can be a handy way to get your solution
up and running in Word 6.0a without a major rewrite. However, be aware that whoever runs your solution
will al'so need Word 6.0a because WW?2CallingConvention is not part of Word 6.0.

Seealso
Converting Word Version 2.x Macros
ToolsMacro

The Microsoft Word Developer's Kit

The Microsoft Word Developer's Kit, published by Microsoft Press, is a comprehensive guide and reference
to programming macros in WordBasic. The book is divided into three parts:

Part 1, "Learning WordBasic,” gets you started programming in WordBasic or learning the details
of WordBasic if you already know another Basic programming language.
- Part 2, "WordBasic Reference," isaprinted version of the statements and functions referencein
WordBasic Help.
- Part 3, "Appendixes," provides information about the tools and extensions to WordBasic included
on acompanion disk.

The disk provided in the Microsoft Word Developer's Kit includes the following:

- Workgroup extensions for WordBasic, which allow access to the messaging application
programming interface (MAPI). With Workgroup extensions, you can include electronic mail (e-mail) in
your custom applications.

- Open database connectivity (ODBC) extensions for WordBasic, which allow access to datain any
database management system (DBMYS) that supports the ODBC application programming interface (API)
standard.

- Toolsfor creating add-ins that interact directly with Microsoft Word using the Microsoft Word
application programming interface (Word API).

- Templates containing example macros and tools, including a wizard that helps you set up your own
custom wizards.

Microsoft Word Developer's Kit (Microsoft Press, 1993) ISBN 1-55615-630-8. Available wherever
computer books are sold and directly from Microsoft Press. Credit card orders. 1-800-M S-PRESS or 615-
793-5090. CompuServe: GO MSP.

Microsoft Word Developer's Kit (Microsoft Press, 1993) ISBN 1-55615-630-8. Available wherever
computer books are sold and directly from Microsoft Press. For more information, including a description
of the contents of the Developer's Kit and how to place orders, see The Microsoft Word Developer's Kit.

Microsoft Solution Providers

Microsoft Solution Providers are independent organizations that provide consulting, integration,
customization, development, technical support and training, or other services with Microsoft products.
These companies are called Solution Providers because they apply technology and provide high-quality
services to help solve real-world business problems.

If your organization devel ops custom solutions using Microsoft Word or Microsoft Office, or if you
design, integrate, train, support, or provide other services for Microsoft products, the Microsoft Solution
Provider program may be for you. Solution Providers receive business development assistance, access to
information and technology, and membership in a powerful community.

To find out more about Microsoft Solution Providers
Inthe U.S,, call 1-800-426-9400.
In Canada, call (800) 563-9048.
Outside North America, contact your local Microsoft office.

Key Examplesin WordBasic Help

How to get alist of the filesin a directory

Y ou use the Files$() function to return the list of filesin adirectory. Thetrick isfirst to use Files$() to
specify thelist of filesto return, and then to use Files$() within aloop to return the rest of thefilesin the
directory.

Examples

How to display a custom dialog box

Y ou use either the Dialog statement or the Dialog() function to display a custom dialog box. Generally, the
Dialog() function is preferred, since it returns the value of the command button chosen. If you use the
Dialog statement instead, an error is generated if the user chooses the Cancel button in the dialog box (the
error can be trapped using an On Error instruction). Before a custom dialog box can be displayed, a Begin
Dialog...End Diaog statement must be used to create a dialog box definition and a Dim statement must be
used to create a dialog record.

Examples

How to display a Word dialog box

Y ou use either the Dialog statement or the Dialog() function to display a Word dialog box. If you use the
Dialog statement, an error is generated if the user chooses the Cancel button in the dialog box (the error
can be trapped using an On Error instruction). Before a Word dialog box can be displayed, a Dim
statement must be used to create a dial og record and the GetCurV a ues statement must be used to place the
current values of the dialog box into the dialog record.

Examples

How to retrieve values from a Word dialog box

Y ou can retrieve the value of one or more Word dialog box settings by using the Dim statement to define a
dialog record for that dialog box and using the GetCurV alues statement to place the current values of the
dialog box into the dialog record. Y ou can then use the syntax DialogRecord.ArgumentName to retrieve
dialog box values, where ArgumentName is the name of an argument for the WordBasic statement that
corresponds to the dial og box.

Example

How to get alist of AutoText entries, bookmarks, or available fonts

Many WordBasic functions beginning with "Count" return the numbers of different items stored in the
active document or template. For example, the CountAutoTextEntries() function returns the number of
AutoText entries in atemplate; the CountBookmarks() function returns the number of bookmarksin the
active document; and the CountFonts() function returns the number of fonts available on the active printer.
Y ou can combine these functions with other functions, such as AutoTextName$(), BookmarkName$(),
and Font$() to return lists of AutoText entries, bookmarks, or fonts.

AutoText Entries Example
Bookmarks Examples
Fonts Example

How to work on part of a document

Y ou can use bookmarks and the CmpBookmarks() function to restrict the operation of amacro to a
particular part of a document.

Example

How to switch between windows

It is often useful for a macro to switch between active windows. Y ou can use the Activate or WindowList
statements to activate a document window or macro-editing window.

Example

How to create "permanent” variables

Y ou can use the SetPrivateProfileString and SetDocumentV ar statements to create variables that persist
after amacro has finished running. The SetDocumentVar statement creates a document variable in the
active document. The SetPrivateProfileString statement creates a variable setting in a settings file stored in
the Windows directory.

Document Variable Example

Settings File Example

How to insert text into a document

Y ou use the Insert statement to insert text into a document. The Insert statement can insert into a document
anything a user can insert using the keyboard, including nonprinting characters such as tab characters.

Examples

How to retrieve text from a document

Generdly, you use the Selection$() function to return text from a document to a macro. The Selection$()
function returns the text of the current selection. Y ou can aso use the GetBookmark$() function to return
bookmarked text in the active document.

Selection$() Example
GetBookmark$() Example

Operators and Predefined Bookmarks

Operators

Overview

Operator Precedence

Arithmetic Operators

The String Concatenation Operator
Comparison Operators

Logica Operators

Predefined Bookmarks
Predefined Bookmarks

Overview of Operators

An expression is any valid combination of operators, variables, numbers, strings, and WordBasic functions
that can be evaluated to a single result. Depending on the kind of operator and values used, the result of an
expression can be anumber, string, or logical value, where the numbers -1 and O (zero) represent the
logical values true and false, respectively. In WordBasic, there are four categories of operators to use with
values to form expressions: arithmetic, string concatenation, comparison, and logical. This section
describes the operators within these categories in order of operator precedence.

Operator Precedence

When several operations occur in an expression, each part is evaluated and resolved in a predetermined
order known as operator precedence. Parentheses can be used to override the order of precedence and
force some parts of an expression to be evaluated before others. Operations within parentheses are always
performed before those outside parentheses.

Within parentheses, however, normal operator precedence is maintained. When expressions contain
operators from more than one category, arithmetic operators (including the string concatenation operator)
are evaluated first, comparison operators are evaluated next, and logical operators are evaluated last.

Within an expression, multiplication and division operations are eval uated before addition and subtraction
operations. When multiplication and division occur together in an expression, each operation is evaluated
asit occurs from left to right. Likewise, when addition and subtraction occur together in an expression,
each operation is evaluated in order of appearance from left to right. All comparison operators have equal
precedence; that is, they are evaluated in the left-to-right order in which they appear.

The string concatenation operator (+) is not really an arithmetic operator, but in precedence it does fall
after all arithmetic operators and before all comparison operators.

Arithmetic Operators

Use these operators to generate any numeric value to assign to a variable or to usein input, output, or

loops.

Operator Description

- (Negation) Indicates that the operand isa
negative value. The operand can
be any numeric expression.

* (Multiplication) Multiplies two numbers. The
operands can be any numeric
expressions.

/ (Division) Divides two numbers. The
operands can be any numeric
expressions.

MOD (Modular division) Dividestwo operands and returns
only the remainder. For example,
the result of the expression 19 MD
7 (which can be read as 19
modulo 7) is 5. The operands can
be any numeric expressions.

+ (Addition) Sums two numbers. The operands
can be any numeric expressions.
Note that you also use + as the
string concatenation operator.

- (Subtraction) Finds the difference between two
numbers. The operands can be any
numeric expressions.

The String Concatenation Operator

Use the string concatenation operator to link literal strings and string variables.

Operator Description

+ (String concatenation) Concatenates two strings. For
example, the result of "Microsoft "
+"Word" is"Microsoft Word".
Y ou must ensure that spaces are
included in the strings being
concatenated to avoid running
words or characters together.
If you use the Str$() function to
return numbers as strings, note that
the function adds a space before
positive numbers (for example,
Str$(47) returns* 47"), but not
before negative numbers (for
example, Str$(-47) returns" -
47").
Note that you also use + asthe
addition operator.

Comparison Operators

Use these operators, also known as relational operators, to compare two expressions (numeric or string)
and return true (-1) or false (0) values for use in control structures such as If conditionals and While...
Wend loops. The following table lists the comparison operators and the conditions that determine whether

the result is true or false.

Operator True

= (Equa to) expl = exp2
<> (Not equal to) expl <> exp2
< (Lessthan) expl < exp2
> (Greater than) expl > exp2
<= (Lessthan or equal to) expl <= exp2

>= (Greater than or equal to) expl >= exp2

False

expl <> exp2
expl = exp2
expl >= exp2
expl <= exp2
expl > exp2
expl < exp2

Logica Operators

Use these operators in combination with comparison expressions to create compound logical expressions
that return true (-1) or false (0) values.
Operator Description
AND If, and only if, both expressions
evaluate true, the result istrue. If
either expression evaluates false,
theresult isfalse. Theresult is
determined as follows:

True AND True True
False AND True False
True AND False False
False AND False False
OR If either or both expressions
evaluate true, the result is true.
The result is determined as
follows:
True OR True True
False OR True True
True OR False True
False OR False False
NOT The result is determined as
follows:
NOT False True
NOT True False
Note that a NOT compound

expression evaluates as described
only when the operands are
comparisons or numeric true and
false values, where trueis-1 and
falseis 0 (zero).

Predefined Bookmarks

Example

Word sets and automatically updates a number of reserved bookmarks. Y ou can use these predefined
bookmarks just as you use the ones that you place in documents, except that you don't have to set them
and they are not listed in the Go To dialog box (Edit menu). The following table describes the predefined
bookmarks available in Word.

Bookmark Description

\Sel Current selection or the insertion
point.

\PrevSell Most recent selection where

editing occurred; going to this
bookmark is equivalent to running
the GoBack statement once.
\PrevSel2 Second most recent selection
where editing occurred; going to
this bookmark is equivalent to
running the GoBack statement

twice.
\StartOf Sel Start of the current selection.
\EndOfSel End of the current selection.
\Line Current line or thefirst line of the

current selection. If the insertion

point is at theend of alinethat is
not the last line in the paragraph,

the bookmark includes the entire
next line.

\Char Current character, which isthe
character following the insertion
point if thereis no selection, or the
first character of the selection.

\Para Current paragraph, which isthe
paragraph containing the insertion
point or, if more than one
paragraph is selected, the first
paragraph of the selection. Note
that if the insertion point or
selection isin the last paragraph of
the document, the "\Para"
bookmark does not include the
paragraph mark.

\Section Current section, including the
break at the end of the section, if
any. The current section contains
the insertion point or selection. If
the selection contains more than
one section, the "\Section”
bookmark isthe first section in the
selection.

\Doc Entire contents of the active
document, with the exception of
the final paragraph mark.

\Page Current page, including the break
at the end of the page, if any. The
current page contains the insertion
point. If the current selection
contains more than one page, the
"\Page" bookmark isthefirst page
of the selection. Note that if the
insertion point or selectionisin
the last page of the document, the
"\Page" bookmark does not
include the final paragraph mark.

\StartOfDoc
\EndOfDoc
\Cdll

\Table

\HeadingL evel

Beginning of the document.

End of the document.

Current cell in atable, which isthe
cell containing the insertion point.
If one or more cells of atable are
included in the current selection,
the "\Céell" bookmark isthe first
cell in the selection.

Current table, which isthe table
containing the insertion point or
selection. If the selection includes
more than one table, the "\Table"
bookmark isthe entirefirst table
of the selection, even if the entire
tableis not selected.

The heading that contains the
insertion point or selection, plus
any subordinate headings and text.
If the current selection is body
text, the "\HeadingL evel"
bookmark includes the preceding
heading, plus any headings and
text subordinate to that heading.

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Predefined Bookmarks Example

The following macro demonstrates a typical use of predefined bookmarks. The macro moves line by line
through a document from the current line and removes any leading spaces from the lines. The While...
Wend instruction uses the "\Sel" (current selection) and "\EndOfDoc" bookmarks with the
CmpBookmarks() function to determine whether the selection is at the end of the document. When the end
of the document is reached, Word displays a message to alert the user.
Sub MAI N
Start O Li ne
Wi | e CnpBookmar ks("\ Sel", "\EndCf Doc")

A$ = Get Bookmar k$("\Line")

B = Asc(A$)

If B = 32 Then Del et eWord

EndCf Li ne

Char Ri ght
Wend
MsgBox "End of docunent."
End Sub

The CmpBookmarks() function compares two bookmarks and can return a number of different values
according to the relative location and size of the bookmarks.

For other examples of predefined bookmarks used in WordBasic macros, see CmpBookmarks(),
CopyBookmark, ParaDown, Select Case.

Conventions

In the Help topic for each WordBasic statement or function, the statement or function name appears as a
bold heading at the top of the window. One or more syntax statements follow the bold heading. Hereisa
syntax example:

CharLeft [Count] [, Select]

When you type an instruction, you must include al the items in the syntax that are formatted in bold. Items
enclosed in brackets are optional. Do not type the brackets when including an optional item. Italic
formatting indicates argument names or value placeholders that you replace with actual values or variables
to which you've already assigned values.

For example, you could use any of the following CharL eft instructions in a macro:
Char Lef t

CharLeft 1

CharLeft 1, 1

If you assigned acceptable values to the numeric variables nove and ext end, you could use the following
CharL eft instruction:

Char Left nove, extend

Note that you must separate arguments with commas. The acceptable values for arguments are listed in the
remarks following the syntax, usually in atable. Some syntax examples include required arguments. For
example:

EditReplaceStyle .Style = text
To use this statement, you must include the .Style argument---note the period preceding the argument

name. Y ou must type all the text that appears in bold and supply a specific value or variable for theitalic
placeholder, asin the following examples:

Edi t Repl aceStyle . Style = "Heading 1"
Edi t Repl aceStyle . Style " Nor mal "

Other statements and functions include a mixture of required and optional arguments:
EditAutoText .Name =text [, .Context = number] [, .InsertAs = number] [, .Insert] [, .Add] [, .
Delete]

According to this syntax, you must include the first argument and a value, but the remaining arguments are
optional. Asthe syntax indicates, every argument in your final macro instruction must be separated by a
comma. For example:

Edi t Aut oText .Nane = "disclainmer", .Context = 1, .Add

Most topicsin WordBasic Help include examples of how to use specific statements and functions.

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

AppActivate Example

This example activates File Manager if it isrunning and starts File Manager if it is not running:
I f Appl sRunni ng("File Manager") Then
AppActivate "File Manager"
El se
Shel | "W NFI LE. EXE"
End | f

AppActivate

Example

AppActivate WindowName$ [, Immediate]

Activates a running application.

Argument Explanation

WindowName$ The name of the application
window to activate, as it appears
in thetitle bar or Task List.
It is not necessary to specify the
entire window name. For example,
to indicate a window named
"Notepad - FILES.TXT," you can
specify "Notepad - FILES.TXT,"
"Notepad,” or even "Note." The
first window name in the Task List
that matches the beginning of the
specified string is affected. The
case of charactersis not significant
in WindowName$.

Immediate Specifies when to switch to the
other application:

0 (zero) or omitted If Word is not active,
Word flashes itstitle bar or icon,
waits for the user to activate Word,
and then activates the other
application.

1 Word immediately activates the other
application, even if Word is not the
active application.

Seedso

Application Control Statements and Functions
AppClose
AppGetNames
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail

Mi crosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule
Shell

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

AppClose Example

This example closes Microsoft Excel if it is running:

I f Appl sRunni ng("M crosoft Excel") Then
AppCl ose "M crosoft Excel"
End I f

AppClose

Example

AppClose [WindowName$]

Closes the specified application.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,

see AppActivate.
Seealso
Application Control Statements and Functions
AppActivate

ApplsRunning()
Shell

AppCount()

AppCount()

Returns the number of open applications (including hidden applications that do not appear in the Task
List). For an example, see AppGetNames Example.

See also
Application Control Statements and Functions
AppGetNames

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

AppGetNames Example

This exampleinserts alist of application window names at the insertion point:
size = AppCount() - 1
Di m wi nnanmes$(si ze)
AppGet Nanmes wi nnanes$()
For i = 0 To size
I nsert wi nnanes$(i)
I nsertPara
Next

AppGetNames, AppGetNames()

Example
AppGetNames ArrayV ariable$()
AppGetNames(ArrayVariable$())
The AppGetNames statement fills a previously defined string array with the names of open application
windows (including hidden application windows that do not appear in the Task List). If ArrayVariable$()
has fewer elements than the number of open applications, the array isfilled with as many names as there
are elements, and an error does not occur.
The AppGetNames() function carries out the same action and also returns the number of open application
windows (including hidden application windows that do not appear in the Task List). AppGetNames()
returns the same value as AppCount().

Seeaso

Application Control Statements and Functions
AppActivate

AppClose

AppCount()

ApplsRunning

AppHide
AppHide [WindowName$]
Hides the specified application and removes its window name from the Task List.
Argument Explanation
WindowName$ A string that matches the
beginning of an application
window name, asit appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,

see AppActivate.
Seealso
Application Control Statements and Functions
AppClose

AppShow

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Applnfo$() Example

This example displays a message box containing the version number of Word:
ver$ = Appl nf o$(2)

MsgBox ver$, "M crosoft Word Version", 64

Applnfo$()
Example

AppInfo$(Type)

Returns one of 25 types of information about the Word application. Note that the GetSystemlnfo$()
function returns similar information. Also, you can use the GetSysteminfo statement to fill an array with
system information.

Typeisone of the following numeric codes, specifying the type of information to return.

Type Explanation

1 Environment (for example,
"Windows 3.10").

2 Word version number (for
example, "6.0").

3 Returns-1 if Word isin a special

mode (for example, CopyText or
MoveText mode).

4 Distance from the |eft edge of the
screen to the |eft border of the
Word window, in points (72 points
= 1inch). Note that when Word is
maximized, Appl nf 0$(4)
returns a negative value to indicate
the borders are beyond the edge of
the screen (this value varies
depending on the width of the
borders).

5 Distance from the top of the screen
to the top border of the Word
window, in points. Note that when
Word is maximized, Appl nf 0$
(5) returnsanegative valueto
indicate the borders are beyond the
edge of the screen (this value
varies depending on the width of
the borders).

6 Width of the workspace, in points;
the width increases as you hide
Word screen elements or widen
the Word window. Note that
increasing the zoom percentage
decreases the return value and vice
versa

7 Height of the workspace, in points;
the height increases as you hide
Word screen elements or increase
the height of the Word window.
Note that increasing the zoom
percentage decreases the return
value and vice versa.

8 Returns -1 if the applicationis
maximized.

9 Total conventional memory, in
kilobytes.

10 Available conventional memory,
in kilobytes.

11 Total expanded memory, in
kilobytes.

12 Available expanded memory, in
kilobytes.

13 Returns -1 if amath coprocessor is
installed.

14 Returns-1 if amouseisinstaled.

15 Available disk space, in kilobytes.

16 Returns the language version of
Word. For example, returns
"Francais'for the French version
of Word. For alist of languages,
see ToolsL anguage.

17 Returns the list separator setting
("sLigt") in the [intl] section of
WINL.INI.

18 Returns the decimal setting
("sDecimal") in the [intl] section
of WINL.INI.

19 Returns the thousand separator
("sThousand") in the[intl] section
of WINL.INI.

20 Returns the currency symbol
("sCurrency") in the [intl] section
of WINL.INI.

21 Returnsthe clock format ("iTime")
in the [intl] section of WIN.INI.

22 Returnsthe A.M. string ("s1159")
in the [intl] section of WIN.INI.

23 Returnsthe P.M. string ("'s2359")
in the [intl] section of WIN.INI.

24 Returns the time separator
("sTime") in the [intl] section of
WINL.INI.

25 Returns the date separator
("sDate") inthe[intl] section of
WINL.INI.

Seeaso

Application Control Statements and Functions

AppGetNames

GetSysteminfo

ApplsRunning()

ApplsRunning(WindowName$)
Returns -1 if the specified application isrunning or O (zero) if it is not.
Argument Explanation
WindowName$ A string that matches the
beginning of an application
window name, asit appearsin the
title bar or Task List. For more
information on WindowName$,
see AppActivate.

For an example, see AppActivate Example.

Seedso

Application Control Statements and Functions
AppActivate

AppClose

AppMaximize, AppMaximize()
AppMaximize [WindowName$] [, State]
AppMaximize([WindowNames$])

The AppMaximize statement maximizes or restores the specified application.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

State Specifies whether to maximize or
restore the application:
0 (zero) Restoresthe application.
1 Maximizesthe application.

Omitted Toggles between restored and
maximized states.

If the state of the application
changes, it is activated. If the state
does not change (for example, if
you run the instruction

AppMaxi m ze "M crosoft Excel ",
1 and Microsoft Excel is already
maximized), the application is not
activated.

The AppMaximize() function returns the following values.
Vaue Explanation

-1 If the application is maximized

0 (zero) If the application is not maximized

Seedso

Application Control Statements and Functions
AppMinimize

AppMove

AppRestore

AppSize

DocMaximize

AppMinimize, AppMinimize()

AppMinimize [WindowName$] [, State]

AppMinimize([WindowName$])

The AppMinimize statement minimizes or restores the specified application.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

State Specifies whether to minimize or
restore the application:
0 (zero) Restoresthe application.

1 Minimizesthe application.

Omitted Toggles between restored and
minimized states.

If the application is restored from
anicon, it isactivated. If the state
does not change or if the
application is minimized, the
application is not activated.

Note
If an untrapped error occurs in a macro while Word is minimized, the macro halts and the Word icon
flashes. When Word is restored, it displays a message indicating the nature of the error.

The AppMinimize() function returns the following values.
Value Explanation

-1 If the application is minimized

0 (zero) If the application is not minimized

Seealso

Application Control Statements and Functions
AppMaximize

AppMove

AppRestore

AppSize

DocMinimize

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

AppMove Example

This example starts Microsoft Excel if it is not running and then arranges Word and Microsoft Excel into
nonoverlapping windows, each one-half the height of the screen:

I f Appl sRunning("M crosoft Excel") = 0 Then M crosoftExcel

AppRest ore

AppMove 0, O

AppSi ze 480, 180

AppRestore "M crosoft Excel"

AppMove "M crosoft Excel", 0, 180

AppSi ze "M crosoft Excel", 480, 180

AppMove

Example

AppMove [WindowName$,] HorizPos, VertPos

Moves the specified application window or icon to a position relative to the upper-left corner of the screen.
If the application is maximized, an error occurs.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window or icon name, asit
appears in thetitle bar or Task
List. If omitted, Word is assumed.
For more information on
WindowName$, see AppActivate.

HorizPos, VertPos The horizontal (HorizPos) and
vertical (VertPos) distance from
the upper-left corner of the screen
to the upper-left corner of the
application window or icon, in
points (72 points = 1 inch).
Negative measurements are
alowed only if you specify

WindowName$.
Seedso
Application Control Statements and Functions
AppRestore
AppSize
AppWindowPosL eft

AppWindowPosTop
DocMove

AppRestore, AppRestore()
AppRestore [WindowName$]
AppRestore(| WindowName$])
The AppRestore statement restores the specified application from a maximized or minimized state and
activates the application. If the specified application is already restored, AppRestore has no effect.
Argument Explanation
WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,

Word is assumed. For more
information on WindowName$,

see AppActivate.
The AppRestore() function returns the following values.
Value Explanation
-1 If the application is restored
0 (zero) If the application is not restored

For an example, see AppMove Example.

Seealso

Application Control Statements and Functions
AppMaximize

AppMinimize

AppMove

AppSize

DocRestore

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar
AppSendM essage Example
This exampl e starts the Windows Hel p application and then sends it a message that displays the Open
dialog box. The number 273 is the decimal value associated with the message WM_COMMAND and
1101 isthe parameter that specifies the Open command. Lparam isignored in this case, but must still be
specified as 0 (zero).
Shel | "W NHELP. EXE"
AppSendMessage "W ndows Hel p", 273, 1101, O

AppSendM essage
Example
~ AppSendM essage [WindowName$,] Message, Wparam, L param

Sends a Windows message and its associated parameters to the application specified by WindowName$.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

Message A decimal number corresponding
to the message you want to send.
If you have the Microsoft
Windows 3.1 Software
Development Kit, you can ook up
the name of the messagein
WINDOWS.H and then convert
the associated hexadecimal
number to a decimal humber using

Calculator.
Wparam, Parameters appropriate for the
Lparam message you are sending. For

information on what these values
represent, see the reference topic
for the message in the Microsoft
Windows 3.1 Programmer's
Reference, Volume 3, availablein
the Microsoft Windows 3.1
Software Devel opment Kit or from
Microsoft Press. To retrieve the
appropriate values, you may need
to use the Spy utility (which
comes with the Microsoft

Windows 3.1 SDK).
Seeadso
Application Control Statements and Functions
AppActivate
ApplsRunning
DDEExecute

DDEPoke

AppShow
AppShow [WindowName$)
Makes visible and activates an application previously hidden with AppHide and restores the application
window name to the Task List. If the application is not hidden, AppShow has no effect.
Argument Explanation
WindowName$ A string that matches the

beginning of an application

window name, as it would appear

inthetitle bar or Task List if the

application were visible. If

omitted, Word is assumed. For

more information on

WindowName$, see AppActivate.

Seedso

Application Control Statements and Functions
AppActivate

AppHide

AppSize

AppSize [WindowName$,] Width, Height

Sizes an application window to a specified width and height. If the application is maximized or minimized,

an error occurs.

Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appearsin the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

Width, Height ~ The width and height of the
application window, in points (72
points = 1 inch).

For an example, see AppMove Example.

Seeaso

Application Control Statements and Functions
AppMove

AppRestore

AppWindowHeight

AppWindowWidth

DocSize

AppWindowHeight, AppWindowHeight()
AppWindowHeight [WindowName$,] Height
AppWindowHeight([WindowName$])

The AppWindowHeight statement adjusts the height of an application window to a specified number of
points (if WindowName$ is omitted, Word is assumed). AppWindowHeight allows you to change the
height of awindow without affecting its width (unlike AppSize). The AppWindowHeight() function
returns the height of an application window, in points. For argument descriptions, see AppSize.

Seedso

Application Control Statements and Functions
AppSize

AppWindowPosL eft

AppWindowPosTop

AppWindowWidth

AppWindowPosL eft, AppWindowPosL eft()
AppWindowPosL eft [WindowName$,] HorizPos
AppWindowPosL eft([WindowName$)])

The AppWindowPosL eft statement moves an application window or icon to a horizontal position specified
in points (if WindowName$ is omitted, Word is assumed). AppWindowPosL eft allows you to change the
horizontal position of awindow or icon without affecting its vertical position (unlike AppMove). The
AppWindowPosL eft() function returns the horizontal position of an application window or icon, in points.
For argument descriptions, see AppMove.

Seealso

Application Control Statements and Functions
AppMove

AppWindowHeight

AppWindowPosTop

AppWindowWidth

AppWindowPosTop, AppWindowPosTop()
AppWindowPosTop [WindowName$,] VertPos
AppWindowPosTop([WindowName$])

The AppWindowPosT op statement moves an application window or icon to avertical position specified in
points (iIf WindowName$ is omitted, Word is assumed). AppWindowPosTop allows you to change the
vertical position of awindow or icon without affecting its horizontal position (unlike AppMove). The
AppWindowPosTop() function returns the vertical position of an application window or icon, in points.
For argument descriptions, see AppMove.

Seealso

Application Control Statements and Functions
AppMove

AppWindowHeight

AppWindowPosL eft

AppWindowWidth

AppWindowWidth, AppWindowWidth()
AppWindowWidth [WindowName$,] Width
AppWindowWidth([WindowName$])

The AppWindowWidth statement adjusts the width of an application window to a specified number of
points (if WindowName$ is omitted, Word is assumed). AppWindowWidth allows you to change the
width of awindow without affecting its height (unlike AppSize). The AppWindowWidth() function
returns the width of an application window, in points. For argument descriptions, see AppSize.

Seedso

Application Control Statements and Functions
AppSize

AppWindowHeight

AppWindowPosL eft

AppWindowPosTop

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ControlRun Example

This example runs the Control Panel:
Control Run . Application = 1

ControlRun
Example o
ControlRun .Application = number
Runs either the Clipboard or the Control Panel (Windows). If you want to run a different program, use the
Shell statement.
Argument Explanation
Application The application to run:

0 (zero) Clipboard
1 Control Panel

Seealso
Application Control Statements and Functions

Shell

ExitWindows

ExitWindows

Closes all open applications and quits Windows. ExitWindows does not save changes or prompt you to
save changes in Word documents; it does prompt you to save changes in other open applications.

See also
Application Control Statements and Functions
FileExit

FileExit

FileExit [Save]
Quits Word.
Argument Explanation
Save Determines whether Word saves
each document before closing it if
itis"dirty" --- that is, if changes
have been made since the last time
the file was saved:
0 (zero) or omitted Prompts the user to
save each changed document.
1 Savesadl edited documents before
quitting.
2 Quitswithout saving changed
documents.
Seeadso
Application Control Statements and Functions
AppClose
ExitWindows

FileCloseAll

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

GetSysteminfo Examples

This example creates atable of system information in a new document. First, the example defines and fills
an array with labels for each type of system information. Second, the example opens a new document and

definesthei nf o$() array, which GetSysteminfo then fills with the system information. Finally, the For...

Next loop inserts the table of information.

Di m a$(11)

a$(0) = "Environnent" : a$(1) = "CPU' : a$(2) = "Ms-DOS'

a$(3) = "Wndows" : a$%$(4) = "% Resources" : a$(5) = "D sk Space"
a$(6) = "Mde" : a$(7) = "Coprocessor" : a$(8) = "Country"

a$(9) = "Language" : a$(10) = "Pixels High" : a$(11) = "Pixels Wde"

Diminfo$(11)

Get System nfo i nfo$()

Fi | eNewDef aul t

For mat Tabs . Position = "1.5 in", .Set

For i =0 To 11
Insert a$(i) + Chr$(9) + info$(i)
I nsert Para

Next

The following example displays in a message box the amount of available disk space:
space$ = Get Syst en nf 0$(26)
MsgBox "Avail abl e di sk space: " + space$ + " bytes."

GetSysteminfo, GetSystemlnfo$()
Example

GetSysteminfo Array$()

GetSystemlnfo$(Type)

The GetSysteminfo statement fills a previously defined string array with information about the
environment in which Word is running.

The GetSysteminfo$() function returns one piece of information about the environment in which Word is
running. Typeisone of the following numeric codes, specifying the type of information to return.

Type Explanation

21 The environment (for example,
"Windows' or "Windows NT")

22 The type of central processing

unit, or CPU (for example,
"80286," "80386," "i486," or

"Unknown")

23 The MS-DOS version number

24 The Windows version number

25 The percent of system resources
available

26 The amount of available disk
space, in bytes

27 The mode under which Windows
isrunning: "Standard" or "386-
Enhanced

28 Whether a math coprocessor is
installed: "Yes' or "No"

29 The country setting ("iCountry")
in the [intl] section of WIN.INI

30 The language setting
("sLanguage") in the [intl] section
of WINL.INI

31 The vertical display resolution, in
pixels

32 The horizontal display resolution,
in pixels

Seealso
Application Control Statements and Functions
Applnfo$()

Mii@mewmm e
Starts Microsoft Accessif it isnot running or switches to Microsoft Accessif it isaready running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

Mii@mdeEg?tel
Starts Microsoft Excdl if it isnot running or switches to Microsoft Excel if it isaready running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

Mii@m@ﬁﬁx{)\'@ro
Starts Microsoft FoxPro if it is not running or switches to Microsoft FoxPro if it is already running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

Migusetivibil
Starts Microso?tI Mail if it isnot running or switchesto Microsoft Mail if it is already running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicetitBeowerioint. _ . . o
Starts Microsoft PowerPoint if it is not running or switches to Microsoft PowerPoint if it is already
running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

Miimwmmjﬁp?c' t
Starts Microsoft Project if it isnot running or switches to Microsoft Project if it isaready running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail

Mi crosoftPowerPoint
MicrosoftPublisher
MicrosoftSchedule

Mig@aseiiftfifi
Starts Microsotltﬂ“ Pﬁgl?rsher if itisnot running or switches to Microsoft Publisher if it is already running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftSchedule

Mii@msﬁﬁ&f?wu%le
Starts Microsoft Schedule+ if it is not running or switches to Microsoft Schedule+ if it is already running.

Seedso
Application Control Statements and Functions
AppActivate
ApplsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher

. o
Starts Print M an%er (Windows) if it is not running or switchesto Print Manager if it is already running.

Seedso

Application Control Statements and Functions
AppActivate

ApplsRunning()

ControlRun

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Shell Examples

This exampl e starts Notepad and |oads the document TORT.TXT:
Shel | "Not epad TORT. TXT"

The following example starts Microsoft Excel as a minimized window:
Shel | " EXCEL. EXE", 2

The following example creates atext-only file (DOCLIST.TXT) that lists documents with the filename
extension .DOC in the C:\WINWORD directory. You might use an instruction like thisto create afile you
can open later for sequential input. The "/c" switch ensures that control is returned to Word after the
command line following "/c" isrun.

Shel | Environ$("COVSPEC') + "/c dir /b C\WNWRD\ *. DOC > DOCLI ST. TXT"

Shell

Example
~ Shell Application$ [, WindowStyle]

Starts another application (such as Microsoft Excel) or process (such as a batch file or executablefile) in

Windows.

Argument Explanation

Application$ The path and filename required to
find the application, as well as any
valid switches or arguments you
choose to include, just as you
would type them in the Run dialog
box in Program Manager.
Application$ can be a document
filename by itself, provided the
filename extension isregistered in
the [Extensions] section of the
WINL.INI file. Shell starts the
associated application and opens
the document. To display an MS-
DOS window, specify Envi ron$
(" CovBPEC') as Application$.

WindowStyle How the window containing the
application should be displayed
(some applications ignore this):
0 (zero) Minimized window (icon)
1 Normal window (current window

size, or previous size if minimized)
2 Minimized window (for Microsoft
Excel compatibility)

3 Maximized window
4 Deactivated window

Seealso

Application Control Statements and Functions
AppActivate

DDElnitiate()

Environ$()

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

GetAutoCorrect$() Example

This exampl e checks the replacement text for the AutoCorrect entry "uk." If the replacement text doesn't
match "United Kingdom," the AutoCorrect entry is modified to do so.
I f GetAutoCorrect$("uk") <> "United Kingdom' Then
Tool sAut oCorrect . Replace = "uk", \
.Wth = "United Kingdont, .Add
End | f

GetAutoCorrect$()

Example

~GetAutoCorrect$(AutoCorrectEntry$)

Returns the replacement text for the specified entry in the Replace column of the AutoCorrect dialog box
(Tools menu). If AutoCorrectEntry$ doesn't exist, GetAutoCorrect$() returns an empty string ().
Argument Explanation
AutoCorrectEntry$ The text specified in the Replace

column for an AutoCorrect entry

in the AutoCorrect dialog box.

AutoCorrectEntry$ is not case-

sensitive. For example, you can

specify an entry "GW" as either

"GW" or "gw."

Seedso
AutoCorrect Statements and Functions
ToolsAutoCorrect

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ToolsAutoCorrect Example
This example adds a replacement entry and activates automatic replacement of text:

Tool sAut oCorrect . ReplaceText = 1, .Replace = "sr", \
.Wth = "Stella Richards", .Add

ToolsAutoCorrect

Example
ToolsAutoCorrect [.SmartQuotes = number] [, .Initial Caps = number] [, .SentenceCaps = number] [, .
Days = number] [, .ReplaceText = number] [, .Formatting = number] [, .Replace = text] [, .With=
text] [, .Add] [, .Delete]

Sets AutoCorrect options. The arguments for the ToolsAutoCorrect statement correspond to the optionsin

the AutoCorrect dialog box (Tools menu).

Argument Explanation

SmartQuotes I 1, Word inserts "smart"
quotation marks (" " and' ') and
apostrophes (") .

Initial Caps If 1, Word corrects words in which
the first two letters are capitalized.
For example, "WOrd" becomes
"Word."

.SentenceCaps I 1, Word capitalizes the first
letter of new sentences.

.Days If 1, Word capitalizes the days of
the week. For example, "tuesday”
becomes "Tuesday."

.ReplaceText If 1, activates automatic
replacement of text.

.Formatting If 1, formatting is stored with the
replacement text when a
replacement entry is added;
available only if text is selected
before running ToolsAutoCorrect.

.Replace The text you want to replace
automatically with the text
specified by .With (for example, a
person's initias).

With The text you want to insert
automatically when the text
specified by .Replace is typed (for
example, aperson's full name).

Add Adds the text specified by .
Replace and .With to the list of
replacement entries.

.Delete Deletes the replacement entry
specified by .Replace.

Seedso

AutoCorrect Statements and Functions
ToolsAutoCorrectDays
ToolsAutoCorrectlnitial Caps
ToolsAutoCorrectReplaceT ext
ToolsAutoCorrectSentenceCaps
ToolsAutoCorrectSmartQuotes

ToolsAutoCorrectDays, ToolsAutoCorrectDays()
ToolsAutoCorrectDays [On]
ToolsAutoCorrectDays()
The ToolsAutoCorrectDays statement selects or clears the Capitalize Names Of Days check box in the
AutoCorrect dialog box (Tools menu).
Argument Explanation
On Specifies whether to select or clear
the check box:
1 Selectsthe check box.

0 (zero) Clearsthe check box.
Omitted Toggles the check box.

The ToolsAutoCorrectDays() function returns the following values.

Value Explanation

0 (zero) If the Capitalize Names Of Days
check box is cleared

-1 If the Capitalize Names Of Days

check box is selected

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect

ToolsAutoCorrectlnitial Caps, ToolsAutoCorrectlnitial Caps()
ToolsAutoCorrectlnitial Caps [On]

ToolsAutoCorrectlnitial Caps()

The ToolsAutoCorrectlnitial Caps statement selects, clears, or toggles the Correct TWo INitial CApitals
check box in the AutoCorrect dialog box (Tools menu). The ToolsAutoCorrectlnitial Caps() function
returns information about the state of the check box. For information on arguments and return values, see
ToolsAutoCorrectDays.

Seedso

AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectReplaceText, ToolsAutoCorrectReplaceT ext()
ToolsAutoCorrectReplaceText [On]
ToolsAutoCorrectReplaceText()

The ToolsAutoCorrectReplaceText statement selects, clears, or toggles the Replace Text AsYou Type
check box in the AutoCorrect dialog box (Tools menu). The Tool sAutoCorrectReplaceText() function
returns information about the state of the check box. For information on arguments and return values, see
ToolsAutoCorrectDays.

Seedso

AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectSentenceCaps, Tool sAutoCorrectSentenceCaps()
ToolsAutoCorrectSentenceCaps [On]
ToolsAutoCorrectSentenceCaps()

The ToolsAutoCorrectSentenceCaps statement selects, clears, or toggles the Capitalize First Letter Of
Sentences check box in the AutoCorrect dialog box (Tools menu). The ToolsAutoCorrectSentenceCaps()
function returns information about the state of the check box. For information on arguments and return
values, see ToolsAutoCorrectDays.

Seedso

AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectSmartQuotes, ToolsAutoCorrectSmartQuotes()
ToolsAutoCorrectSmartQuotes [On]
ToolsAutoCorrectSmartQuotes()

The ToolsAutoCorrectSmartQuotes statement selects, clears, or toggles the Change 'Straight Quotes To
'‘Smart Quotes check box in the AutoCorrect dialog box (Tools menu). The
ToolsAutoCorrectSmartQuotes() function returns information about the state of the check box. For
information on arguments and return values, see ToolsAutoCorrectDays.

Seedso

AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

fﬁspi ays t'hte AutoText dialog box if there is a selection (and proposes up to the first 32 characters of the
selection for the unique entry name) or, if there is no selection, attempts to match the text before or
surrounding the insertion point with an AutoText entry and insert the entry (including its formatting, if
any). Word looks for the entry first in the active template, then in the Normal template, and finally in each
loaded global template in the order listed in the Templates And Add-ins dialog box (File menu). If no
match can be made, an error occurs. AutoText corresponds to the AutoText button on the Standard toolbar.

Seedso

AutoText Statements and Functions
AutoTextName$()
CountAutoTextEntries()
EditAutoText

GetAutoText$()

InsertAutoText

SetAutoText

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

AutoTextName$() Example

This example creates a new document that lists all AutoText entries in the Normal template and any
loaded global templates. Entry names are inserted with bold formatting and are followed by the contents of
the entry.
Fi | eNewDef aul t
For count = 1 To Count Aut oText Entri es()

a$ = AutoText Nanme$(count)

Bold 1 : Insert a$

I nsert Para
Bold O : EditAutoText .Nane = a$, .lInsert
InsertPara : |nsertPara

Next

AutoTextName$()

Example

AutoTextName$(Count [, Context])

Returns the name of an AutoText entry in the specified context.

Argument Explanation

Count The number of the AutoText entry,
from 1 to the total number of
AutoText entries defined in the
given context (you can obtain the
total using CountAutoTextEntries
()). AutoText entries are listed in
aphabetic order.

Context The context in which to return the
name of an AutoText entry:

0 (zero) or omitted Normal template and
any loaded global templates

1 Activetemplate

Note that if Context is 1 and the

active template is the Normal

template, AutoTextName$()

generates an error.

Seedso

AutoText Statements and Functions
AutoText

CountAutoTextEntries()
EditAutoText

GetAutoText$()

InsertAutoText

SetAutoText

CountAutoTextEntries()

CountAutoTextEntries(]Context])

Returns the number of AutoText entries defined for the specified context.
Argument Explanation
Context The context in which to count
AutoText entries:
0 (zero) or omitted Normal template and
any loaded global templates
1 Activetemplate
Note that if Context is 1 and the
active template isthe Normal
template, CountAutoTextEntries()
returns O (zero).

For an example, see AutoTextName$() Example.

Seedso

AutoText Statements and Functions
AutoTextName$()

GetAutoText$()

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

EditAutoText Examples

This example selects the text of the first paragraph (not including the paragraph mark) and then definesiit
as an AutoText entry named "MainHead," stored in the Normal template:

St ar t Of Docunent

Edi t GoTo "\ Para"

CharLeft 1, 1

Edi t Aut oText . Nanme = "Mai nHead", .Context = 0, .Add

The following example inserts the "MainHead" AutoText entry without formatting:
Edi t Aut oText .Name = "MinHead", .InsertAs = 1, .lInsert

EditAutoText

Example

~ EditAutoText .Name = text [, .Context = number] [, .InsertAs=number] [, .Insert] [, .Add] [, .
Delete]

Inserts, adds, or deletes an AutoText entry. The arguments for the EditAutoText statement correspond to
the options in the AutoText dialog box (Edit menu).

Argument Explanation

.Name The name of the AutoText entry.

.Context A context for the new AutoText
entry:

0 (zero) or omitted Normal template
1 Activetemplate
Note that .Context is used only
when Word adds an AutoText
entry. When inserting or deleting
an entry, Word automatically
looks for the entry first in the
active template and then in the
Normal template. When inserting
an entry and no match isfound in
the active or Normal templates,
Word looks in each loaded global
template in the order listed in the
Templates And Add-ins dialog
box (File menu). Y ou cannot
delete an AutoText entry from a
loaded global template.

InsertAs Used with .Insert to control
whether the entry isinserted with
its formatting:

0 (zero) or omitted Entry isinserted with
formatting.
1 Entryisinserted as plain text.

Y ou can specify only one of the following arguments.

Argument Explanation

Insert Inserts the entry into the document

Add Stores the entry in the template (if
thereis no selection, an error
oceurs)

.Delete Deletes the entry from the
template

If you do not specify .Insert, .Add, or .Delete, Word inserts the AutoText entry.

Seedso

AutoText Statements and Functions
AutoText

AutoTextName$()
CountAutoTextEntries()
GetAutoText$()

InsertAutoText

SetAutoText

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

GetAutoText$() Example

This exampl e displays a message box containing the text of the AutoText entry named "Welcome," which
is stored in the active template:

MsgBox Cet Aut oText $(" Wl cone", 1)

GetAutoText$()

Example

“GetAutoText$(Names$ [, Context])

Returns the unformatted text of the specified AutoText entry.
Argument Explanation

Name$ The name of the AutoText entry
Context Where the AutoText entry is
stored:

0 (zero) or omitted Normal template and
any loaded global templates
1 Activetemplate

Note that if Context is 1 and the
active template is the Normal
template, GetAutoText$() returns
an empty string (**).

Seedso

AutoText Statements and Functions
AutoText

AutoTextName$()
CountAutoTextEntries()
EditAutoText

InsertAutoText

SetAutoText

InsertAutoText

InsertAutoText

Attempts to match the current selection or the text before or surrounding the insertion point with an
AutoText entry and insert the entry (including its formatting, if any). Word looks for the entry first in the
active template, then in the Normal template, and finally in each loaded global template in the order listed
in the Templates And Add-ins dialog box (File menu). If no match can be made, an error occurs.

Seedso

AutoText Statements and Functions
AutoText

AutoTextName$()
CountAutoTextEntries()
EditAutoText

GetAutoText$()

SetAutoText

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

SetAutoText Example

This example defines the AutoText entry "Disclaim” in the active template; "Disclaim” contains the text
assigned tot ext $:

text$ = "No warranty is either expressed or inplied."

Set Aut oText "Disclaint, text$, 1

SetAutoText

Example

~ SetAutoText Name$, Text$ [, Context]

Defines atext-only AutoText entry. Unlike an EditAutoText instruction that uses .Add, SetAutoText does
not require a selection.

Argument Explanation

Name$ The name of the new entry.

Text$ The text to be associated with the
entry.

Context Specifiesthe availability of the
entry:

0 (zero) or omitted Normal template
(available to all documents)

1 Activetemplate (available only to
documents based on the active
template)

Note that if Context is 1 and the
active template isthe Normal
template, SetAutoText generates
an error.

Seedso

AutoText Statements and Functions
AutoText

AutoTextName$()
CountAutoTextEntries()
EditAutoText

GetAutoText$()

InsertAutoText

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

BookmarkName$() Example

This example puts alist of every bookmark name in a document into the array mar k$() . You could use this
array to present alist of bookmark names in a dialog box. Note that the size of the array is one less than
the number of bookmarks because the subscript for the first array element is O (zero), not 1.
nunmBookmar ks = Count Bookmar ks()
arraySi ze = nunBookmarks - 1
Di m mar k$(arraySi ze)
For n = 0 To arraySize
mar k$(n) = Bookmar kNane$(n + 1)
Next

BookmarkName$()

Example

BookmarkName$(Count)

Returns the name of the bookmark specified by Count.

Argument Explanation

Count The number of the bookmark,
from 1 to the total number of
bookmarks defined for the active
document (you can obtain the total
using CountBookmarks()). The
order of bookmark namesis
determined by the order of the
bookmarks in the document.
Y ou must specify Count;
otherwise, the function returns an
error. For example, a$ =
Bookmar kNane$() generates an
error.

Seedso

Bookmarks Statements and Functions
CountBookmarks()

GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

CmpBookmarks() Example

This example adds a string of charactersin front of every linein a selection. The example first marks the
selected text with a bookmark and then uses a While...Wend loop controlled by three CmpBookmarks()
functions to add text in front of each line. The first CmpBookmarks() function tests whether the insertion
point and the selection, stored in the "Temp" bookmark, begin at the same point; thisis true when the loop
begins. The second CmpBookmarks() function tests whether the insertion point is contained within
"Temp"; thisistrue as long as the insertion point is within the original selection. Thethird
CmpBookmarks() function tests whether the insertion point is at the end of the original selection. When
the insertion point moves beyond the original selection, the loop ends. Within the While...Wend loop is yet
another CmpBookmarks() instruction, which determines whether the selection is at the end of the
document, a special case.

CopyBooknmark "\ Sel", "Tenp"
Sel Type 1
Wi | e CnpBooknar ks("\Sel ", "Temp") = 8\
O CnpBookmar ks("\Sel ", "Tenmp") = 6 \
O CnpBookmar ks("\Sel ", "Tenp") = 10 \
And | eavel oop <> 1
EndOf Li ne
| f CnpBooknarks("\Sel", "\EndOfDoc") = O Then | eaveloop =1
Start O Li ne
I nsert "xx*"
Li neDown
Wend

Edi t GoTo " Tenp"
Edi t Bookmark "Tenp", .Delete

CmpBookmarks()

Example

CmpBookmarks(Bookmark1$, Bookmark2$)

Compares the contents of two bookmarks. Use CmpBookmarks() with the predefined bookmarksin Word
to check the location of the insertion point or to create a macro that operates only within an area marked
with abookmark. For example, using the" \ Sel" (current selection) bookmark and the " \ Para' bookmark,
you can set up amacro to operate only within a particular paragraph. For more information about
predefined bookmarks, see Predefined Bookmarks.

Argument Explanation

Bookmark1$ The first bookmark

Bookmark2$ The second bookmark

This function returns the following values.

Value Explanation

0 (zero) Bookmark1$ and Bookmark2$
are equivaent.

1 Bookmark1$ isentirely below
Bookmark2$.

2 Bookmark1$ isentirely above
Bookmark2$.

3 Bookmark1$ isbelow and inside
Bookmark2$.

4 Bookmark1$ isinside and above
Bookmark2$.

5 Bookmark1$ encloses
Bookmark2$.

6 Bookmark2$ encloses
Bookmark1$.

7 Bookmark1$ and Bookmark2$

begin at the same point, but
Bookmark1$ islonger.

8 Bookmark1$ and Bookmark2$
begin at the same point, but
Bookmark2$ islonger.

9 Bookmark1$ and Bookmark2$
end at the same place, but
Bookmark1$ islonger.

10 Bookmark1$ and Bookmark2$
end at the same place, but
Bookmark2$ islonger.

11 Bookmark1$ isbelow and
adjacent to Bookmark2$.

12 Bookmark1$ isabove and
adjacent to Bookmark2$.

13 One or both of the bookmarks do
not exist.

See also

Bookmarks Statements and Functions

CopyBookmark

EditBookmark

EmptyBookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

CopyBookmark Example

This exampl e selects the current section, then sets one bookmark at the start of the section and another
bookmark at the end. Y ou can use this technique to define starting points and end points between which
your macro operates.

Edi t GoTo "\ Secti on"

CopyBooknark "\StartOf Sel ", "SectionStart"

CopyBookmark "\ EndCf Sel ", " Secti onEnd"

CopyBookmark

Example
CopyBookmark Bookmark1$, Bookmark2$
Sets Bookmark2$ to the insertion point or range of text marked by Bookmark1$. Y ou can use this
statement with predefined bookmarks---such as" \ StartOfSel" and " \ EndOfSel” --- to set bookmarks
relative to the insertion point or selection. For more information about predefined bookmarks, see
Predefined Bookmarks.

Seedso

Bookmarks Statements and Functions
CmpBookmarks()

EditBookmark

SetEndOfBookmark
SetStartOfBookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

CountBookmarks() Examples

This example creates an array containing every bookmark in the active document:
si ze = Count Bookmarks() - 1
Di m mar ks$(si ze)
For count = 0 To size
mar ks$(count) = Bookmar kNane$(count + 1)
Next

The following example deletes all the bookmarks in the active document:
For n = 1 To Count Booknar ks()
Edi t Bookmar k . Name = Bookmar kNanme$(Count Bookmar ks()), \
.Delete
Next

Eounh%8f2marﬁ‘r L5

s the number of bookmarks in the active document. Asthe first example in this entry demonstrates,
you can use this function to define an array containing every bookmark in a document.

Seedso

Bookmarks Statements and Functions
BookmarkName$()

EditBookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

EditBookmark Example

This example searches for a paragraph containing only the word "Index" (that is, the heading for the index)
, and then, if the heading is found, adds a bookmark in front of it. Y ou could use this bookmark in another
EditBookmark instruction or with EditGoTo to move the insertion point to the index.
St art O Docunent
EditFind .Find = "~plndex"p", .MtchCase = 1, \
.Direction =0, .Format = 0
I f EditFi ndFound() Then
Char Left : CharRight
Edi t Bookmark . Name = "I ndex", .Add
End | f

EditBookmark

Example

~ EditBookmark .Name = text [, .SortBy = number] [, .Add] [, .Delete] [, .Goto]
Adds, deletes, or selects the specified bookmark. The arguments for the EditBookmark statement
correspond to the options in the Bookmark dialog box (Edit menu).
Argument Explanation
.Name The name of the bookmark
.SortBy Controls how thelist of
bookmarks is sorted when you
display the Bookmark dialog box
with a Dialog or Dialog()
instruction:
0 (zero) By name
1 Bylocation

Y ou can specify only one of the following arguments.

Argument Explanation

Add Adds abookmark at the insertion
point or selection

.Delete Deletes the bookmark

.Goto Moves the insertion point or

selection to the bookmark
If you do not specify .Add, .Delete, or .Goto, Word adds the bookmark.

Seedso
Bookmarks Statements and Functions
BookmarkName$()
CmpBookmarks()
CopyBookmark
CountBookmarks()
EditGoTo
EmptyBookmark()
ExistingBookmark()
GetBookmark$()
SetEndOfBookmark
SetStartOf Bookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

EmptyBookmark() Example

This example verifies that the bookmark referred to in each REF field both exists and is not empty. If a
reference to a nonexistent or empty bookmark is encountered, an appropriate message box is displayed.
St art Of Docunent
Vi ewFi el dCodes 1
EditFind .Find = "~d REF', .Format = 0, .Wap =0
Whi | e EditFi ndFound()
Char Lef t
Wor dRi ght 2
wrdRight 1, 1
mar k$ = RTrinB(Sel ection$())
If Not ExistingBooknmark(mark$) Then
MsgBox mark$ + " is not a bookmark."
El sel f Enpt yBookmar k(mar k$) Then
MsgBox mark$ + " is an enpty bookmark. "
End I f
Char Ri ght
EditFind .Find = "~d REF', .Format = 0, .Wap =0
Wend

EmptyBookmark()

Example

EmptyBookmark(Name$)

Determines whether Name$ is an "empty" bookmark. An empty bookmark marks only alocation for the
insertion point in a document; it does not mark any text. Y ou can use EmptyBookmark() to verify that a
bookmark (for example, abookmark referred to in a REF field) does indeed mark text.

This function returns the following values.

Value Explanation

-1 If the bookmark is empty (that is,
it marks no text)

0 (zero) If the bookmark is not empty or
does not exist

Seedso

Bookmarks Statements and Functions

BookmarkName$()

CmpBookmarks()

CountBookmarks()

EditBookmark

ExistingBookmark()
GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ExistingBookmark() Example
This macro displays a prompt in the status bar for the name of a bookmark to add. If the bookmark does
not yet exist, it is added. If the bookmark already exists, Word displays a message box that asks whether to
reset the bookmark. If the user answers No, the macro ends. Otherwise, the bookmark is reset.
Sub MAIN
I nput "Bookmark to add", nyMark$
I f ExistingBookmark(nmyMark$) Then
ans = MsgBox(nmyMark$ + " already exists; reset?", 36)
If ans = 0 Then Goto bye
End | f
Edi t Bookmar k nyMark$, . Add
bye:
End Sub

ExistingBookmark()

Example
ExistingBookmark(Name$)
Indicates whether the bookmark specified by Name$ exists in the active document. This function returns
the following values.
Value Explanation
-1 If the bookmark exists
0 (zero) If the bookmark does not exist

Seeaso

Bookmarks Statements and Functions
BookmarkName$()

CmpBookmarks()

CountBookmarks()

EditBookmark

EmptyBookmark()

GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

GetBookmark$() Examples

This example setsthe variablefirst $ to the text of the first bookmark in the document:
first$ = Get Bookmar k$(Bookmar kName$(1))

The following example sets the variable par at ext $ to the text of the paragraph containing the insertion
point:
paratext$ = Get Bookmar k$("\ Para")

The bookmark " \ Para" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

GetBookmark$()

Example
GetBookmark$(Names)

Returns the text (unformatted) marked by the specified bookmark. If Name$ is not the name of a
bookmark in the active document, GetBookmark$() returns an empty string (" *).

Seedso

Bookmarks Statements and Functions
BookmarkName$()
CountBookmarks()

EditBookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

SetEndOfBookmark Example

This example marks the end of the current selection with the bookmark "EndPoint";
Set EndOf Booknmark "\ Sel ", "EndPoi nt"

The bookmark " \ Sel" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

SetEndOfBookmark

Example
~SetEndOfBookmark Bookmark1$ [, Bookmark2$]

Marks the end point of Bookmark1$ with Bookmark2$. If Bookmark2$ is omitted, Bookmark1$ is set to
its own end point.

Seedso

Bookmarks Statements and Functions
CopyBookmark

EditBookmark

SetStartOf Bookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

SetStartOfBookmark Example
This example marks either end of the current paragraph with bookmarks:

Set St art Of Bookmark "\ Para", "Begi nPara"
Set EndOf Booknark "\ Para", "EndPara"

The bookmark " \ Para" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

SetStartOf Bookmark

Example

~ SetStartOf Bookmark Bookmark1$ [, Bookmark2$]

Marks the starting point of Bookmark1$ with Bookmark2$. If Bookmark2$ is omitted, Bookmark1$ is set
to its own starting point.

Seedso

Bookmarks Statements and Functions
CopyBookmark

EditBookmark

SetEndOfBookmark

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

BorderBottom Example

This exampl e applies a bottom border using one of two line styles, depending on whether the selection is
within atable. If the selection iswithin atable, adouble border is applied; otherwise, athick, single border
is applied.
If Sellnfo(12) = - 1 Then

BorderLineStyle 8

Bor derBottom 1
El se

Bor derLi neStyle 4

Bor der Bottom 1
End | f

BorderBottom, BorderBottom()

Example

BorderBottom [On]
BorderBottom()

The BorderBottom statement applies or removes a bottom border for the selected paragraphs, table cells,
or graphic. Note that when you apply a bottom border to a series of paragraphs or table rows, the border
appears only beneath the last paragraph or row in the series. If you want a border to separate each
paragraph or row, use Borderinside.
Argument Explanation
On Specifies whether to apply or

remove a bottom border:

1 Appliesthe border

0(zero) Removes the border

Omitted Toggles the border

The BorderBottom() function returns the following values.
Value Explanation
0 (zero) If at least one of the selected items

has no bottom border or if the

selection contains a mixture of

items (for example, a paragraph

and atable cell)

1 If each item in the selection is of
the same type and has a bottom
border

Seedso

Borders and Frames Statements and Functions

Borderlnside

BorderL eft

BorderLineStyle

BorderNone

BorderOutside

BorderRight

BorderTop

FormatBordersAndShading
ShadingPattern

BorderInside, Borderlnside()

BorderInside [On]

Borderlnside()

The Borderlnside statement applies or removes inside borders for the selected paragraphs or table cells.
The following illustrations show inside borders within a series of paragraphs and atable.

Loretn .psm. Lovetr ipsum

Laretn psurm

Lowetn bt Loretn ipsurn

Laretn ipsurm

Loretr ipaum Lorern ipsurm

Loretn ipsum

Inside borders for
paragraphs

Inside borders for atable

The Borderlnside() function returns either 0 (zero) or 1, depending on whether all the selected paragraphs
or table cells are formatted with an inside border. Note that BorderInside() returns O (zero) if the selection
isasingletable cell, regardless of the borders applied to the surrounding group of cells; asingle table cell
can have bottom, left, right, and top borders, but not inside borders.

For complete descriptions of arguments and return values, see BorderBottom.

See also

Borders and Frames Statements and Functions

BorderBottom
BorderL eft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
BorderTop

FormatBordersAndShading

ShadingPattern

BorderL eft, BorderL eft()
BorderLeft [On]

BorderL eft()

The BorderL eft statement applies or removes | eft borders for the selected paragraphs, table cells, or
graphic. The BorderLeft() function returns either 0 (zero) or 1, depending on whether the selected graphic
or all the selected paragraphs or table cells are formatted with a left border.

For complete descriptions of arguments and return values, see BorderBottom.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside
BorderLineStyle
BorderNone
BorderOutside

BorderRight

BorderTop
FormatBordersAndShading
ShadingPattern

BorderLineStyle, BorderLineStyle()
BorderLineStyle Style
BorderLineStyle()

The BorderLineStyle statement specifies the line style for subsequent BorderBottom, Borderinside,
BorderL eft, BorderOutside, BorderRight, and BorderTop instructions.

Argument Explanation
Style One of 12 line styles:
0 (zero) None
1
2 —_—
3 —
4 I
5 I
6 []
7 _
8 ——
9 —
10
5

For an example that uses BorderLineStyle, see BorderBottom Example.

The BorderLineStyle() function returns a number from 0 (zero) to 11 that corresponds to the line style that
will be applied by subseguent border instructions. Note that this line style does not necessarily match the
line style of bordersin the selected paragraphs, table cells, or graphic.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside

BorderL eft

BorderNone
BorderOutside
BorderRight

BorderTop
FormatBordersAndShading
ShadingPattern

BorderNone, BorderNong()
BorderNone [Remove]
BorderNone()

The BorderNone statement removes or applies al borders (I€ft, right, top, bottom, and inside) for the
selected items. Y ou can remove or apply al borders for a series of paragraphs or table rows, but not a
combination of paragraphs and table rows. To remove or apply borders for a graphic, you must first select
only that graphic.
Argument Explanation
Remove Specifies whether to remove or

apply al borders for the selection:

0 (zero) Appliesborders
1 or omitted Removes borders

The BorderNone() function returns O (zero) if the selection contains at least one border and 1 if the
selection contains no borders.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside

BorderL eft
BorderLineStyle
BorderOutside
BorderRight

BorderTop
FormatBordersAndShading
ShadingPattern

BorderOutside, BorderOutside()
BorderOutside [On]
BorderOutside()

The BorderQOutside statement applies or removes outside borders for the selected paragraphs, table cells, or
graphic. The following illustrations show outside borders applied to a series of paragraphs and an entire
table.

Larern s Lorern ipsuim | Loretn s
Lorem ps) Lorern ipsuim | Loretn e

Laretn ips) Lorets ipsurn | Lorem ipsurn

Outside borders for Outside borders for atable

paragraphs

The BorderOutside() function returns either O (zero) or 1, depending on whether the selected graphic or all
the selected paragraphs or table cells are formatted with an outside border.

For complete descriptions of arguments and return values, see BorderBottom.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside

BorderL eft
BorderLineStyle
BorderNone

BorderRight

BorderTop
FormatBordersAndShading
ShadingPattern

BorderRight, BorderRight()
BorderRight [On]
BorderRight()

The BorderRight statement applies or removes right borders for the selected paragraphs, table cells, or
graphic. The BorderRight() function returns either 0 (zero) or 1, depending on whether the selected
graphic or all the selected paragraphs or table cells are formatted with aright border.

For complete descriptions of arguments and return values, see BorderBottom.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside

BorderL eft
BorderLineStyle
BorderNone
BorderQOutside

BorderTop
FormatBordersAndShading
ShadingPattern

BorderTop, BorderTop()
BorderTop [ON]
BorderTop()

The BorderTop statement applies or removes atop border for the selected paragraphs, table cells, or
graphic. Note that when you apply atop border to a series of paragraphs or table rows, the border appears
only above thefirst paragraph or row in the series. If you want a border to separate each paragraph or row,
use Borderlnside.

The BorderTop() function returns either 0 (zero) or 1, depending on whether the selected graphic or all the
selected paragraphs or table cells are formatted with a top border.

For complete descriptions of arguments and return values, see BorderBottom.

Seedso

Borders and Frames Statements and Functions
BorderBottom
Borderinside

BorderL eft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
FormatBordersAndShading
ShadingPattern

FormatBordersAndShading

FormatBordersAndShading [.ApplyTo = number] [, .Shadow = number] [, .TopBorder = number] [, .
LeftBorder = number] [, .BottomBorder = number] [, .RightBorder = number] [, .HorizBorder =
number] [, .VertBorder = number] [, .TopColor = number] [, .LeftColor = number] [, .BottomColor =
number] [, .RightColor = number] [, .HorizColor = number] [, .VertColor = number] [, .FineShading
= number] [, .FromText = number or text] [, .Shading = number] [, .Foreground = number] [, .
Background = number] [, .Tab = text]

Sets border and shading formats for the selected paragraphs, table cells, or graphic. The arguments for the
FormatBordersAndShading statement correspond to the options in the Borders And Shading dialog box
(Format menu).
Argument Explanation
ApplyTo If the selection consists of more

than one of the following items,

specifies to which item or items

the border format is applied:

0 (zero) Paragraphs

1 Graphic
2 Cdls
3 Whole table

If .ApplyTo isomitted, the default
for the selection is assumed.

.Shadow Specifies whether to apply a
shadow to the border of
paragraphs or a graphic:

0 (zero) Does not apply a shadow.

1 Appliesashadow.

Y ou cannot apply a shadow to a
table or table cells. If you want to
apply ashadow to a paragraph or
graphic, the item must have---or
you must specify---matching right,
left, top, and bottom borders.
Otherwise, an error occurs.

.TopBorder, .LeftBorder,. Theline style for the border on the

BottomBorder, . top, left, bottom, and right edges

RightBorder of paragraphs, cells, or agraphic,
in the range O (zero), which isno
border, through 11 (for alist of
line styles and their values, see
BorderLineStyle).

.HorizBorder Theline style for the horizontal
border between paragraphs or
table cells, in the range O (zero),
which is no border, through 11.
The border does not appear unless
itisapplied to at least two
consecutive paragraphs or table
rows.

VertBorder Theline style for the vertical
border between table cells, in the
range O (zero), which is no border,
through 11. The border does not
appear unlessthe table selection is
at least two cellswide. (When
applied to paragraphs, .
VertBorder has the same effect as .

LeftBorder.)
.TopCalor, .LeftCoalor, . The color to be applied to the
BottomColor, .RightColor, . specified borders, in the range
HorizColor, .VertColor from O (zero), which is Auto,

through 16 (for alist of colors and
their values, see CharColor).

.FineShading A shading patternin the range O
(zero) to 40 corresponding to a
shading percentage in 2.5 percent
increments. If .FineShading is
anything but 0 (zero), .Shading is
ignored.

JFromText The distance of the border from
adjacent text, in points or a text
measurement. Valid only for
paragraphs; otherwise, .FromText
must be an empty string (*") or
omitted or an error will occur.

.Shading The shading pattern to be applied
to the selection, in the range from
0 (zero), which is Clear, through
25 (for alist of shading patterns
and their values, see
ShadingPattern).

.Foreground The color to be applied to the
foreground of the shading, in the
range from O (zero), whichis
Auto, through 16 (for alist of
colors and their values, see
CharColor).

.Background The color to be applied to the
background of the shading, in the
range from O (zero), whichis
Auto, through 16.

.Tab Specifies which tab to select when
you display the Borders And
Shading dialog box with a Dialog
or Diadog() instruction:

0 (zero) Borderstab
1 Shadingtab

Seedso
Borders and Frames Statements and Functions
Border Top
BorderBottom
Borderinside
BorderL eft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
ShadingPattern

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

FormatFrame Example

This example selects and frames the current paragraph and then formats the frame as | eft-aligned, relative
to the current column, with a 0.13-inch gap between the frame and text above and below:

Edi t GoTo "\ Para"

I nsert Frane

For mat Frame . PositionHorz = 0, .PositionHorzRel = 2, \
.DistVertFronText = "0.13 in"

FormatFrame

Example
FormatFrame [.Wrap = number] [, .WidthRule = number] [, .FixedWidth = number or text] [, .
HeightRule = number] [, .FixedHeight = number or text] [, .PositionHorz = number or text] [, .
PositionHorzRel = number] [, .DistFromText = number or text] [, .PositionVert = number or text] [, .
PositionVertRel = number] [, .DistVertFromText = number or text] [, .MoveWithText = number] [, .
LockAnchor = number] [, .RemoveFrame]
Positions and sets options for the selected frame. If the insertion point or selection is not within aframe, an

error occurs. The arguments for the FormatFrame statement correspond to the options in the Frame dialog
box (Format menu).

Argument Explanation
Wrap Specifies a Text Wrapping option:
0 (zero) Text does not wrap around the
frame.
1 Textwrapsaround the frame.
WidthRule The rule used to determine the

width of the frame:

0 (zero) Auto (determined by paragraph
width).

1 Exactly (width will be exactly .
FixedWidth).

FixedWidth If WidthRuleis 1, the width of the
frame in points or atext
measurement.

.HeightRule The rule used to determine the
height of the frame:

0 (zero) Auto (determined by paragraph

height).
1 AtLeast (height will benolessthan .
FixedHeight).
2 Exactly (height will be exactly .
FixedHeight).
FixedHeight If .HeightRuleis 1 or 2, the height

of the frame in points or atext
measurement (1 inch = 72 points).
.PositionHorz Horizontal distance, in points or a
text measurement, from the edge
of theitem specified by .
PositionHorzRel. Y ou can also
specify "Left," "Right," "Center,"
"Inside," and "Outside" as text
arguments.
.PositionHorzRel Specifies that the horizontal
position isrelative to:
0(zero) Margin
1 Page
2 Column
DistFromText Distance between the frame and
thetext to its left, right, or both, in
points or atext measurement.
.PositionVert Vertical distance, in pointsor a
text measurement, from the edge
of the item specified by .
PositionVertRel. You can also
specify "Top," "Bottom," and
"Center" as text arguments.
PositionVertRel Specifies that the vertical position
isrelative to:
0(zero) Margin
1 Page
2 Paragraph
. Distance between the frame and
DistVertFromText the text above, below, or both, in
points or atext measurement.

.MoveWithText If 1, the frame moves astext is
added or removed around it.

.LockAnchor If 1, the frame anchor (which
indicates where the frame will
appear in normal view) remains
fixed when the associated frame is
repositioned. A locked frame
anchor cannot be repositioned.

.RemoveFrame Removes the frame format from
the selected text or graphic.

Seedso

Borders and Frames Statements and Functions
FormatDefineStyleFrame

InsertFrame

RemoveFrames

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

InsertFrame Example

This example inserts a frame and then positionsit in the margin to the left of the current paragraph, so the
user can type amargin notein it. If the active document is not in page layout view, Word displays a
message box asking if the user wants to switch to page layout view.
Sel Type 1
If ViewPage() = 0 Then
ans = MsgBox("Switch to page |ayout view?", \
"Insert Margin Note", 36)

If ans = - 1 Then Vi ewPage
End |f
I nsert Frame
Format Frame .Wap = 1, .WdthRule = 1, .FixedWdth = ".75in", \
.PositionHorz = "Left", .PositionHorzRel = 1, \
.Di stFronifext = "0.13 in", .PositionVert = "0", \
.PositionVertRel = 2, .DistVertFronText = "0"

Sel Type 1 : FontSize 8 : Italic 1
HScroll O

InsertFrame

Example
InsertFrame
Inserts an empty frame, or frames the selected text, graphic, or both. If thereis no selection, Word inserts a
1-inch - square frame at the insertion point (the frame appears as a square in page layout view). Y ou can
change the dimensions of the frame with FormatFrame.

Seedso

Borders and Frames Statements and Functions
FormatFrame

RemoveFrames

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

RemoveFrames Example

This example removes all frames from the entire document:
Edi t Sel ect Al'l
RenoveFr anes

RemoveFrames

Example
RemoveFrames

Removes all framesin the selection. Note that borders, applied automatically when you insert aframe
around text, are not removed.

Seedso

Borders and Frames Statements and Functions
FormatBordersAndShading

FormatFrame

InsertFrame

ShadingPattern, ShadingPattern()
ShadingPattern Type
ShadingPattern()

The ShadingPattern statement applies one of 26 shading formats to the selected paragraphs, table cells, or
frame.

Argument Explanation
Type The shading format to apply:
0 O
13 - |
1 | 4 =
2 3 [
3
4 19
5 2]
6 1]]
7 29 =|
8 B3 Il
9 [
10 23
11] i3]
12 BB EA
The ShadingPattern() function returns the following values.
Value Explanation
0 (zero) If none of the selection is shaded
(the shading pattern is Clear)
-1 If the selection contains a mixture
of shading patterns

1 through 25 If al the selection is formatted
with the same shading pattern

See also
Borders and Frames Statements and Functions
FormatBordersAndShading

Vii@yEBdeéfd‘Mbar
Displays the Borderstoolbar if it is hidden or hides the Borders toolbar if it is displayed.

Seedso

Borders and Frames Statements and Functions
ViewDrawingToolbar

ViewToolbars

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Call Example
This example calls the subroutine Fi ndNane twice; each line, with or without Call, has the same effect:

Cal |l Fi ndNane "Transfer control to the subroutine Fi ndNanme
Fi ndNanme "Transfer control to the subroutine Fi ndNanme

Call
Example

~[Cdll] [MacroName][.][SubName] [ArgumentList]

Transfers control to a subroutine in the running macro or another macro. To specify a subroutinein
another macro, use the syntax MacroName.SubName. If SubName is not specified, the Main subroutinein
MacroName runs. Call is optional; it can help distinguish subroutine names from WordBasic keywords
when you read and edit macros. Each variable in the comma-delimited ArgumentList must correspond to a
value that the subroutine being called is prepared to receive.

Note

When you call another macro, Word looks for the macro in available templates in the following order: the
template containing the Call instruction, the active template, the Normal template, and loaded global
templates. For example, suppose USER.DOT and NORMAL.DOT both contain a DisplayM essage macro.
The following macro in USER.DOT:

Fi | eNew . Tenpl ate = "Normal "

Di spl ayMessage

runs the DisplayM essage macro in USER.DOT, even though a document based on NORMAL.DOT is
active when the Call instruction isrun.

For more information about using subroutines, including how to share variables and pass arguments
between subroutines, see Chapter 4, "Advanced WordBasic," in the Microsoft Word Devel oper's Kit.

Seeaso
Branching and Control Statements and Functions
Sub...End Sub

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

For...Next Examples

This example displays five message boxes in arow, each giving the current value of count :
For count =1 To 5

MsgBox "Current value of count is" + Str$(count)
Next count

The following example produces exactly the same effect as the previous example by decrementing the
value of count in stepsof -1
For count =5 To 1 Step -1
MsgBox "Current value of count is" + Str$(count)
Next

The following example demonstrates how you can use WordBasic counting functions with a For...Next
loop to perform an operation on all the itemsin a certain category. In this example, the names of al the
bookmarks defined in the active document are stored in the array mar k$() .
numBookmar ks = Count Booknmar ks()
arraySi ze = nunBookmarks - 1
Di m mar k$(arraySi ze)
For n = 0 To arraySize
mar k$(n) = Bookmar kNane$(n + 1)
Next

For...Next

Example

For CounterVariable = Start To End [Step Increment]

Series of instructions

Next [CounterVariabl €]

Repeats the series of instructions between For and Next while increasing CounterVariable by 1 (default) or
Increment until CounterVariable is greater than End. If Start is greater than End, Increment must be a
negative value; CounterVariable decreases by Increment until it islessthan End.
If you place one or more For...Next loops within another, use a unique CounterVariable for each loop, as
in the following instructions:
For I =1 To 10
For J =1 To 10
For K =1 To 10
"Series of instructions
Next K
Next J
Next

Seedso

Branching and Control Statements and Functions
Goto

If...Then...Else

Select Case

While..Wend

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Function...End Function Example

This macro prompts the user to type a number of degrees Fahrenheit, which is passed to the Conver t Tenp
() function through the variable f ahr enhei t . The function convertsf ahrenhei t to degrees Celsius, and
then the main subroutine displays this value in a message box.
Sub MAIN

On Error Resune Next

tmp$ = I nput Box$("Type a Fahrenheit tenperature:")

fahrenheit = Val (tnmp$)

cel sius = Convert Tenp(fahrenheit)

MsgBox tnmp$ + " Fahrenheit =" + Str$(celsius) + " Celsius"
End Sub

Function Convert Tenp(fahrenheit)

tnp = fahrenheit
tnp = ((tnp - 32) * 5) / 9
tnp = Int(tnp)

Convert Tenp = tnp
End Function

Function...End Function
Example

Function FunctionName[$][(ArgumentList)]

Series of instructions to determine avalue
FunctionName[$]
=vaue

End Function

Defines afunction---a series of instructions that returns a single value. To return a string value, the
function name must end with adollar sign ($). Note that unlike the names of built-in WordBasic functions,
the names of user-defined functions that do not specify ArgumentList do not end with empty parentheses;
if you include empty parentheses, an error will occur.

ArgumentListisalist of variables, separated by commas, that are passed to the function by the statement
calling the function. String variables must end with adollar sign. ArgumentList cannot include values;
constants should be declared as variables and passed to the function through variable names.

Seealso
Branching and Control Statements and Functions
Sub...End Sub

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Goto Example

This macro displays a message box, with Yes, No, and Cancel buttons, asking if the user wants to continue
the macro. If the user chooses No or Cancel, the macro branches to the label bye immediately before End
Sub, and the macro ends.

Sub MAI N

ans = MsgBox("Conti nue nacro?", 3)

If ans = 0 O ans = 1 Then Goto bye

"Series of instructions to run if the user chooses Yes

bye:

End Sub

Goto
Example
Goto Labe
Redirects a running macro from the Goto instruction to the specified L abel anywhere in the same
subroutine or function. The macro continues running from the instruction that follows the label. Keep the
following in mind when placing alabel in amacro:
- Labels must be the first text on aline and cannot be preceded by spaces or tab characters.
- Labels must be followed by acolon (:). (Do not include the colon in the Goto instruction.)
- Labelsthat contain letters must begin with aletter and can contain letters and numbers up to a
maximum length of 40 characters, not counting the colon.
- Y ou can use a number that appears at the beginning of aline instead of alabel. Line numbers are
supported primarily for compatibility with Basic programs created in older versions of the Basic
programming language that require line numbers. The line number can be as high as 32759 and does not
need a colon following it.

Seeaso

Branching and Control Statements and Functions
For...Next

If...Then...Else

Select Case

While..Wend

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

If...Then...Else Examples

This example applies bold formatting to the entire selection if the selection is partially bold:
If Bold() = -1 Then Bold 1

The following example appliesitalic formatting if the selection is entirely bold; otherwise, underline
formatting is applied:
If Bold() =1 Then Italic 1 Else Underline 1

The following example shows how you can use a compound expression as the condition (in this case,
whether the selection is both bold and italic):

If Bold() =1 And Italic() = 1 Then Reset Char

The following example uses the full syntax available with the If conditional. The conditional could be
described as follows: "If the selection is entirely bold, makeit italic. If the selection is partially bold, reset
the character formatting. Otherwise, make the selection bold."
If Bold() = 1 Then
Italic 1
El self Bold() = -1 Then
Reset Char
El se
Bold 1
End | f

If...Then...Else

Example
[T Condition Then Instruction [Else Instruction]
If Condition1 Then

Series of instructions
[Elself Condition2 Then
Series of instructions]
[Else
Series
of instructions]
End If

Runs instructions conditionally. In the simplest form of the If conditional --- If Condition Then Instruction
--- the Instruction runsif Condition istrue. In WordBasic, "true" means the condition evaluatesto -1 and
"false" means the condition evaluates to O (zero).

Y ou can write an entire If conditional on one line if you specify one condition following If and one
instruction following Then (and one instruction following Else, if included). Do not conclude this form of
the conditional with End If. Note that it is possible to specify multiple instructions using this form if you
separate the instructions with colons, as in the following conditional:

If Bold() =1 Then Bold O : Italic 1

In general, if you need to specify a series of conditional instructions, the full syntax is preferable to
separating instructions with colons. With the full syntax, you can use Elself to include a second condition
nested within the If conditional. Y ou can add as many Elself instructionsto an If conditional as you need.

Seedso

Branching and Control Statements and Functions
For...Next

Goto

Select Case

While..Wend

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

On Error Examples

This example shows a common use of On Error Resume Next to avoid WordBasic error number 102,
"Command failed,"” when a user cancels a dialog box or prompt:

On Error Resune Next

A$ = | nput Box$(" Your nane please:")

The following macro prompts the user to specify a sequentia file for input (for example, atext-only file
containing alist of Word documents). If the file cannot be found, the instructions following the label
specified by On Error Goto Label suggest a reason corresponding to the error number.
Sub MAIN
On Error Goto ErrorHandl er
DocNane$ = | nput Box$("Filename for input:", "", DocNane$)
Open DocName$ For |nput As #1
'Statenments that use the input go here
Cl ose #1
Got o Done "If there is no error, skip the error handl er
Error Handl er:
Sel ect Case Err
Case 53 : MsgBox "The file " + DocNane$ + " does not exist."
Case 64 : MsgBox "The specified drive is not avail able.”
Case 76 : MsgBox "The specified directory does not exist."

Case 102 "If the user cancels the dial og box
Case Else : MsgBox "Error" + Str$(Err) + " occurred."
End Sel ect
Err =0
Done:

End Sub

On Error
Example

On Error Goto L abel
On Error Resume Next
On Error Goto O

Establishes an "error handler" --- typically, a series of instructions that takes over when an error occurs.
When an error occurs in a macro that does not contain the On Error statement, an error message is

displayed and the macro quits.
Thisform Performs this action
On Error Goto Label Jumps from the line where the

error occurred to the specified
label. The instructions following
thislabel can then determine the
nature of the error (using the
special variable Err) and take some
appropriate action to correct or
resolve the problem. For more
information, see Err.

On Error Resume Next Continues running the macro from
the line that follows the line where
the error occurred and resets Err to
0 (zero). In effect, the error is
ignored.

On Error Goto 0 Disables the error trapping
established by an earlier On Error
Goto or On Error Resume Next
statement and sets Err to O (zero).

Once an error triggers an error handler, no further error handling occurs until Err isreset to O (zero).
Usually, you should placean Err = 0 instruction at the end of your error handler. Do not includeErr = 0
in the middle of an error handler or you risk creating an endless loop if an error occurs within the handler.
Note that an error handler established in the main subroutineis not in effect when control passes to another
subroutine. To trap all errors, each subroutine must have its own On Error statement and error handler.
After control is returned to the main subroutine, the main On Error instruction is again in effect.
WordBasic generates errors with numbers less than 1000; Word itself generates errors with numbers 1000
or greater. Error handlers can trap both WordBasic and Word errors. However, if aWord error occurs, an
error message is displayed, and the user must respond before the macro can continue. When the user
chooses the OK button, control passes to the error handler.

For acompletelist of all WordBasic and Word error messages and error numbers, see Error Messages.

Seeaso

Branching and Control Statements and Functions
Err

Error

Goto
Select Case

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Select Case Examples
This example goes to each paragraph in the document and inserts either a bullet or a hyphen, depending on
whether the paragraph's styleis"Listiteml1" or "Listitem2." If a paragraph that is not formatted with either
of these stylesis found, the instruction following Case Else displays a message box.
St art O Docunent
Wi | e CnpBooknmar ks("\Sel", "\EndOfDoc") <> 0
Sel ect Case Styl eNane$()
Case "Listlteml"”
Tool sBul | et sNunmbers . Type = 0
Case "Listltenk"

Insert "-" + Chr$(9)
Case El se
MsgBox "Not a list style"
End Sel ect
Par aDown
Wend

The following example illustrates how Select Case may be used to evaluate numeric expressions. The
Select Case instruction generates arandom number between -5 and 5, and the subsequent Case instructions
run depending on the value of that numeric expression.

Sel ect Case Int(Rnd() * 10) - 5

Case 1,3
Print "One or three"
Case Is > 3
Print "Greater than three"
Case -5 To O
Print "Between -5 and O (inclusive)"
Case El se

Print "Mst be 2"
End Sel ect

Select Case
Example
Select Case Expression
Case CaseExpression

Series of instruction(s)
[Case Else
Series
of instruction(s)]
End Select
Runs one of several series of instructions according to the value of Expression. Expression is compared
with each CaseExpression in turn. When amatch is found, the instructions following that Case
CaseExpression are run, and then control passes to the instruction following End Select. If thereisno
match, the instructions following Case Else are run. If there is no match and there is no Case Else
instruction, an error occurs.
The Select Case control structure is an important part of most dialog functions. For more information
about dialog functions, see Chapter 5, "Working with Custom Dialog Boxes," in the Microsoft Word
Developer's Kit.
Keep the following pointsin mind when using Select Case:
- Use the Is keyword to compare CaseExpression with Expression using arelational operator. For
example, theinstruction Case I's > 8 testsfor any value greater than 8. Do not use the I's keyword without
arelational operator or an error will occur; for example, Case 1's 8 generates an error.
- Usethe To keyword to test for avalue that falls within a specified range. For example, the
instruction case 4 To 8 testsfor any value greater than or equal to 4 and less than or equal to 8.
- If you include a Goto instruction to go to alabel outside the Select Case contral structure, an error
will occur.

Seedso

Branching and Control Statements and Functions
For...Next

Goto

If..Then...Else

While..Wend

Stop
Stop [SuppressM essage]

Stops a running macro. If SuppressMessageis -1, no message appears. Otherwise, Word displays a
message box that says the macro was interrupted. When Word encounters a Stop instruction in amacro
that is open in a macro-editing window, you can click the Continue button on the Macro toolbar to
continue running the macro.

Seealso
Branching and Control Statements and Functions
ShowVars

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

Sub...End Sub Example

In this macro, the main subroutine calls the GoBeep subroutine, passing the number of times to beep
through the variable nunBeeps:
Sub MAI N
nunmBeeps = 3
GoBeep(nunBeeps)
End Sub

Sub GoBeep(count)
For n = 1 To count
Beep
For t =1 To 100 : Next "Add time between beeps
Next
End Sub

If the GoBeep subroutine werein a macro named LibMacros, the call to the subroutine would be as
follows:
Sub MAIN
nunBeeps = 3
Li bMacr os. GoBeep(nunBeeps)
End Sub

For more information about using subroutines in different macros, see Chapter 4, "Advanced WordBasic,"
in the Microsoft Word Developer's Kit.

Sub...End Sub

Example
~Sub SubName[(ArgumentList)]
Series of instructions

End Sub

Defines a subroutine. A subroutine is a series of instructions that can be called repeatedly from the main
subroutine and can make your macros shorter and easier to debug.
Argument Explanation
SubName The name of the subroutine.
ArgumentList A list of arguments, separated by
commas. Y ou can then use these
arguments in the subroutine.
Values, string and numeric
variables, and array variables are
al valid arguments.

Subroutines must appear outside the main subroutine --- generally, you add subroutines after the End Sub
instruction that ends the main subroutine. Y ou can call a subroutine not only from the macro's main
subroutine, but aso from other subroutines and even other macros. For more information about using
subroutines, including how to share variables and pass arguments between subroutines, see Chapter 4,
"Advanced WordBasic," in the Microsoft Word Devel oper's Kit.

Seedso

Branching and Control Statements and Functions
Call

Function...End Function

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

While...Wend Example

This example uses the Files$() function within a While...Wend loop to insert alist of filesin the current
directory whose filenames end with the .DOC filename extension. Theinstruction as$ = Fil es$("*.
poc') returnsthe first filename with a .DOC extension and a$ = Fi | es$() returnsthe next filename with
a.DOC extension each time the instructions within the loop run. Assoon asFi | es$() returns an empty
string ("), indicating there are no other .DOC filesin the current directory, the conditionas <> "" is
false and Word exits the While...\Wend loop.
Fi | eNewDef aul t
currdir$ = Files$(".")
a$ = Files$("*.DOC")
InsertPara : Insert a$
count =1
Wile a$ <> ""

count = count + 1

a$ = Files$()

InsertPara : Insert a$
Wend
Start O Docunent : Bold 1
Insert currdir$ + "*.DOC. " + Str$(count - 1) + " files"

While...Wend

Example

While Conditionl

Series of instructions

Wend

Repeats a series of instructions between While and Wend while the specified condition istrue. The While.
..Wend control structureis often used in WordBasic to repeat a series of instructions each time a given
piece of text or formatting is found in a Word document. For an example of this use of While...\Wend, see
EditFind.

Seealso

Branching and Control Statements and Functions
For...Next

Goto

If...Then...Else

Select Case

Demotes thle selected paragraphs by one level in amultilevel list. If the selected paragraphs are formatted
asabulleted list or as a numbered list that isn't multilevel, Demotelist increases the indent. If the selected
paragraphs are not already formatted as a numbered or bulleted list, an error occurs.

Seedso

Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering

Promotelist

FormatBulletDefault, FormatBulletDefault()
FormatBulletDefault [Add]
FormatBulletDefault()

The FormatBulletDefault statement adds bullets to or removes bullets from the selected paragraphs.
Argument Explanation
Add Specifies whether to add or

remove bullets:

0 (zero) Removesbullets. If the
paragraph preceding or following the
selection is not formatted asalist
paragraph, the list format in the
selection is removed along with the
bullets.

1 Addshbullets. If the paragraph
preceding the selection already has
bullets applied with the Bullets And
Numbering command (Format menu)
, the selected paragraphs are
formatted with matching bullets;
otherwise, the default settings of the
Bullets And Numbering dialog box
(Format menu) are used.

Omitted Toggles bullets.

The FormatBulletDefault() function returns the following values.

Value Explanation

0 (zero) If none of the selected paragraphs
are bulleted or numbered

-1 If the selected paragraphs are not

al bulleted, all "skipped,” or all
formatted with the same level of
numbering

1 If al the selected paragraphs are
bulleted

Seedso

Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering
FormatNumberDefault

SkipNumbering

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

FormatBulletsAndNumbering Example

This exampl e adds diamond-shaped bullets to the selected paragraphs and formats the paragraphs with a
hanging indent:
For mat Bul | et sAndNunbering .Hang = 1, .Preset = 3

FormatBulletsAndNumbering

Example
FormatBulletsAndNumbering [.Remove] [, .Hang = number] [, .Preset = number]
Adds bullets or numbers to the selected paragraphs based on the preset bullets or numbering scheme you
specify, or removes bullets and numbers. The arguments for the FormatBulletsAndNumbering statement
correspond to the optionsin the Bullets And Numbering dialog box (Format menu). Y ou cannot display
this dialog box using a Dialog or Dialog() instruction.

Argument Explanation

.Remove Removes bullets or numbering
from the selection.

.Hang If 1, applies a hanging indent to
the selected paragraphs.

Preset A number corresponding to a

bullets or numbering schemein
the Bullets And Numbering dialog
box (Format menu).

To determine the appropriate
number, display the Bullets And
Numbering dialog box and then
select the tab with the scheme you
want. Counting left to right, values
for the preset schemes are:

1 through 6 for the schemes on the Bulleted tab.
- 7 through 12 for the schemes on the Numbered tab.
- 13 through 18 for the schemes on the Multilevel tab.

Seedso

Bullets and Numbering Statements and Functions
FormatBulletDefault

FormatNumberDefault

RemoveBulletsNumbers

SkipNumbering

FormatNumberDefault, FormatNumberDefault()
FormatNumberDefault [On]
FormatNumberDefault()

The FormatNumberDefault statement adds numbers to or removes numbers from the selected paragraphs.
Argument Explanation
On Specifies whether to add or

remove numbers:

0 (zero) Removes numbers. If the
paragraph preceding or following the
selection is not formatted asalist
paragraph, the list format in the
selection is removed along with the
numbers.

1 Addsnumbers. If the paragraph
preceding or following the selection
already has numbers applied with the
Bullets And Numbering command
(Format menu), the selected
paragraphs are formatted with the
same numbering scheme; otherwise,
the default settings of the Bullets And
Numbering dialog box are used.

Omitted Toggles numbers.

The FormatNumberDefault() function returns the following values.

Value Explanation

0 (zero) If none of the selected paragraphs
are numbered or bulleted

-1 If the selected paragraphs are not

all bulleted, all "skipped," or al
formatted with the same level of
numbering

1-9 If al the selected paragraphs are
numbered with the same level of
numbering in amultilevel list

10 If al the selected paragraphs are
numbered with one of the six
schemes on the Numbered tab in
the Bullets And Numbering dialog

box

11 If al the selected paragraphs are
bulleted

12 If al the selected paragraphs are
"skipped"

Seedso

Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering

SkipNumbering

Promot&stﬁe selected paragraphs by one level in amultilevel list. If the selected paragraphs are formatted
as abulleted list or as anumbered list that isn't multilevel, PromoteList decreases the indent. If the
selected paragraphs are not already formatted as a numbered or bulleted list, an error occurs.

Seedso

Bullets and Numbering Statements and Functions
DemoteL ist

FormatBulletsAndNumbering

Removes EulH%ts or numggrrssas well as list formatting from the selected paragraphsin abulleted or
numbered list created with the Bullets And Numbering command (Format menu). Subsequent bulleted or
numbered paragraphs start a new list and restart the numbering in the case of anumbered list.
RemoveBulletsNumbers corresponds to the Remove button in the Bullets And Numbering dialog box
(Format menu).

Seeaso

Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering

SkipNumbering

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

SkipNumbering Example

This exampl e selects the current paragraph and uses SkipNumbering() to determine whether the paragraph
is skipped. If it is, numbering is reapplied to the paragraph.

Edi t GoTo "\ Para"

I f SkipNunbering() = 1 Then

For mat Bul | et sAndNunbering .Hang = 1, .Preset = 8
End | f

2 ngg SkipNumberi ngg) .
ing statement skips bullets or numbers for the selected paragraphsin a bulleted or

created with the Bullets And Numbering command (Format menu). Subsequent bulleted or
numbered paragraphs continue the current list, rather than starting a new list (and restarting the numbering
in the case of anumbered list).

The SkipNumbering() function returns the following values.
Value Explanation
0 (zero) If the selected paragraphs are not
skipped. The selected paragraphs
may or may not be part of a
bulleted or numbered list.
-1 If some of the selected paragraphs
are skipped and some are not, or
the selection includes more than
onelevel inamultilevel list.

1 If al the selected paragraphs are
skipped.

Seedso

Bullets and Numbering Statements and Functions

Demotel ist

FormatBulletsAndNumbering

Promotelist

RemoveBulletsNumbers

ToolsBulletListDefault
ToolsBulletListDefault

Adds bullets and tab characters to the selected paragraphs and formats the paragraphs with a hanging
indent. Bullets are inserted as SYMBOL fields.

Note

The ToolsBulletListDefault statement corresponds to the Bulleted List button on the Toolbar in Word
version 2.x. In Word version 6.0, the Bullets button is on the Formatting toolbar and its corresponding
WordBasic statement is FormatBulletDefault.

Seedso

Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault

ToolsBulletsNumbers

ToolsNumberListDefault

ewc shareres, T3EWClass, $$button:WordBA SICCloseewc shareres, T3EWClass, $$button:WordBA SICCopyewc shareres,
T3EWClass, $$button:WordBA SI CPrintewc shareres, T3SEWCLASS, $$+button:WordBA SICGreyBar

ToolsBulletsNumbers Example

This example formats the selection as a bulleted list, with the bullet defined as character code 183 in the
Symbol font, at 10 pointsin size:
Tool sBul | et sNunbers . Font = "Synbol", .CharNum = "183", .Type = 0, \

.Points = 10, .Hang = 1, .Indent = "0.25 in", .Replace =0

ToolsBulletsNumbers

Example

ToolsBulletsNumbers [.Replace = number] [, .Font = text] [, .CharNum = text] [, .Type = number] [, .
text] [, .AutoUpdate = number] [, .FormatNumber = number] [, .Punctuation = text]
[, .StartAt = text] [, .Points = number or text] [, .Hang = number] [, .Indent = number or text] [, .

FormatOutline =

Remove]

Sets formats for bulleted, numbered, and outline-numbered paragraphs. This statement is included for
compatibility with the previous version of Word; the arguments for ToolsBulletsNumbers correspond to
the options in the Bullets And Numbering dialog box (Tools menu) in Word version 2.x. Not every

argument applies to each type of list.

Argument

.Replace

.Font

.CharNum

.Type

.FormatOutline

AutoUpdate

.FormatNumber

.Punctuation

StartAt
.Points
.Hang

.Indent

.Remove

Explanation

If 1, Word updates bullets only for
paragraphs that are already
bulleted, or updates numbers only
for paragraphs that are already
numbered.

The font for the numbers or the
bullet character in alist.

The character or ANSI code for
the character to use as the bullet.
Bullets are inserted as SYMBOL
fields.

Thetype of list to create:

0 (zero) Bulleted list

1 Numbered list

2 Outline-numbered list

A format for numbering outlines.
The available formats are Legal,
Outline, Sequence, Learn, and
Outline All. The Learn format
applies aformat based on the first
number for each level in the
selection.

If 1, numbers are inserted as fields
that update automatically when the
sequence of paragraphs changes.
Specifies aformat for numbering
lists:

O(zero) 1,2,3,4

N RTTRLY;
2L, i, iv

3 ABCD

4 abcd

The separator character or

characters for numbersin alist. If
you specify one character, it
follows each number; if you
specify two characters, they
enclose each number.

The starting number or letter for
thelist.

The size of the bullet character, in
points, in abulleted list.

If 1, sets a hanging indent for the
list.

If .Hang is set to 1, the width of
the left indent in points or atext
measurement.

Removes existing bullets or
numbers.

Seeadso

Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault

ToolsBulletListDefault

ToolsNumberListDefault

T mﬂdutl)blbeiﬂm}?llault
Aggjs numbers and tab characters to the selected paragraphs and formats the paragraphs with a hanging
indent.

Note

The ToolsNumberListDefault statement corresponds to the Numbered List button on the Toolbar in Word
version 2.x. In Word version 6.0, the Numbering button is on the Formatting toolbar and its corresponding
WordBasic statement is FormatNumberDefault.

Seedso

Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault

ToolsBulletListDefault

ToolsBulletsNumbers

What's New in WordBasic

New Macro-Editing and WordBasic Capabilities

This section describes improvements to the macro-editing environment and WordBasic capabilities that
were not availablein earlier versions of Word.

New Macro Toolbar Buttons

The Macro Text Style

Globa Templates

The Organizer Dialog Box

New Custom Dialog Box Capabilities
Miscellaneous Improvements

New WordBasic Statements and Functions

This section lists new or modified WordBasic statements and functions, sorted by category. Note that
statements and functions that correspond to new commands, toolbar buttons, and other new features of
Word version 6.0 are not listed.

Application Control Statements and Functions
Date and Time Functions

Disk Access Statements and Functions
Environment Statements and Functions

Menu Customization Statements and Functions
Sel ection Statements and Functions

String Functions

Window Control Statements and Functions
Miscellaneous Statements and Functions

New Macro Toolbar Buttons

The Macro toolbar now includes graphical buttons and a box you can use to select any open macro to run.
The following new toolbar buttons correspond to features not accessible from the Macro toolbar in earlier
versions of Word.

Click To

ewc shareres, Display the Record Macro dialog
T3EWCLASS, box.

dllres:.wordres.

dll: TBARS:0:0:

16:0

ewc shareres, Record the next command you
T3EWCLASS, perform.

dllres:wordres.

dil: TBARS:16:

0:16:0

ewc shareres, Now allows you to step through
T3EWCLASS, subroutines and functionsin other
dllres;wordres. open macros.

dll: TBARS:64:

0:16:0

ewc shareres, Add or remove "REM " from the
T3EWCLASS, beginning of selected lines.
dllres:wordres.

dil: TBARS:128:

0:16:0

ewc shareres, Display the Macro dialog box
T3EWCLASS, (Toolsmenu).

dllres:wordres.

dil: TBARS:96:

0:16:0

ewc shareres, Open the Dialog Editor.
T3EWCLASS,

dllres:wordres.

dil: TBARS8:112:

0:16:0

The Macro Text Style

Y ou can use the new Macro Text built-in style to change the default style of text in a macro-editing
window. For example, you can change the font or the tab stop settings.

Global Templates

Using the Templates command (File menu), you can make any template a global template. The macrosin
aglobal template are available in any document window, just like macros stored in the Normal template.
This means that you can access the macros stored in atemplate without having to attach the template to a
document or base a document on it.

The Organizer Dialog Box

Y ou can use the new Organizer dialog box to manage your macros. Y ou can select any number of macros
in atemplate and copy or move them to another template; you can rename macros or delete them. Y ou
display the Organizer dialog box by choosing the Organizer button in the Macro dialog box (Tools menu).

New Custom Dialog Box Capabilities
WordBasic supports four new controls for custom dialog boxes:

Drop-down list boxes are supported with the DropListBox statement.

Multiple-line text boxes are supported with anew argument for the TextBox statement.

Graphics are supported with the Picture statement.

File preview boxes are su(fportedeh_the FilePreview statement.
In addition, you can now create dialog boxes that chiangedymamically. For example, you can create a
dialog box that updates the contents of alist box based on options the user selects elsewherein the dialog
box. Also, thereis no longer any limit to the number of controls a custom dialog box can contain. For
more information about dynamic dialog boxes, see Creating Dynamic Dialog Boxes and Dialog Function

Syntax.

11 11

Miscellaneous | mprovements
The following improvements have been made to WordBasic:

The ability to turn off screen updates. Y ou can use the ScreenUpdating statement to control
Whether changes are displayed on your monitor while a macro iSrunning. You can increase the speed of
some macros by preventing screen updates.
- New date and time functions. WordBasic now includes a set of "serial humber" date and time
functions compatible with Visual Basic version 3.0. In addition, the Date$() and Time$() functions have
been modified to accept serial numbers for dates and times.
- Improved array handling. Y ou can now pass array variables to subroutines and user-defined
functions. Y ou can use the SortArray statement to sort arrays. For more information about arrays, see
SortArray and Chapter 4, "Advanced WordBasic," in the Microsoft Word Developer's Kit.

Server support for object linking and embedding (OLE) Automation. Applications that support
OLE Automation, such as Microsoft Excel version 5.0, can use OLE Automation to access Word. For more
information about OLE Automation, see Chapter 8, "Communicating with Other Applications," in the
Microsoft Word Developer's Kit.
- Private settings files. Using SetPrivateProfileString and GetPrivateProfileString$(), you can create
private settings files to store variables and values. For more information about private settings files, see
SetPrivateProfileString, GetPrivateProfileString$(), and Chapter 9, "More WordBasic Techniques," in the
Microsoft Word Developer's Kit.
- Document variables. Using SetDocumentVar and GetDocumentVar$(), you can store and retrieve
variablesin the active document. For more information about document variables, see SetDocumentV ar,
GetDocumentVar$(), and Chapter 9, "More WordBasic Techniques,”" in the Microsoft Word Developer's
KIt.
- Form-field macros. Y ou can attach macros to form fields so that macros are triggered either when a
form field is activated (an "on-entry" macro) or when it is no longer active (an "on-exit" macro). For more
information about form-field macros, see Chapter 9, "More WordBasic Techniques,” in the Microsoft Word
Developer's Kit.
- Larger variables. String variables can now hold as many as 64K characters; most string functions
now accept 64K strings. A numeric variable can be aslarge as 1.79e+308.
- The Stop statement, used to interrupt a macro, now includes an argument to suspend the macro
without displaying an error message. Usually, when you are debugging, the error message is unnecessary.
For more information on debugging, see Chapter 6, "Debugging,” in the Microsoft Word Developer's Kit.

Application Control Statements and Functions

AppClose
AppCount()

AppGetNames
AppHide
ApplsRunning()

AppSendM essage

AppShow

Closes the specified application

Returns the number of open
applications (including hidden
applications that do not appear in
the Task List)

Fills an array with the names of
open application windows

Hides the specified application and
removes its window name from
the Task List

Returns -1 if the specified
application is running or O (zero) if
itisnot

Sends a Windows message and its
associated parametersto the
specified application

Makes visible and activates an
application previously hidden with
AppHide and restores the
application window name to the
Task List

Date and Time Functions

Date$()
DateSerial ()

DateV/alue)

Day()

Now takes a serial number asan
optional argument

Returns the serial number of a date
specified in the format Y ear,
Month, Day

Returns the serial number of a date
specified asastring

Returns the day of the month
corresponding to the specified
seria number

Returns the number of days
between two dates based on a 360-
day year (twelve 30-day months)
Returns the hours component of
the specified serial number
Returns the minutes component of
the specified serial number
Returns the month component of
the specified serial number
Returns a serial number that
represents the current date and
time

Returns the seconds component of
the specified serial number

Now takes a serial number as an
optional argument

Returns the serial number of a
time specified in the format Hour,
Minute, Second

Returns the serial number of a
time specified asastring

Returns a serial number that
represents the current date
Returns a number corresponding
to the day of the week on which
the date represented by the
specified serial number falls
Returns the year component of the
specified serial number

Disk Access Statements and Functions
CountDirectories() Returns the number of

subdirectories contained within the
specified directory

GetAttr() Returns a number corresponding

- to thefile attributes set for the
specified file

GetDirectory$() Returns the name of a subdirectory

- within the specified directory

SetAttr Setsfile attributes for the specified

file

Environment Statements and Functions

Environ$() Returns a string associated with an
- MS-DOS environment variable
GetSysteminfo Fillsastring array with each

available piece of information

about the environment in which

Word is running
GetSystemlinfo$() Returns one piece of information
about the environment in which
Word is running

Menu Customization Statements and Functions

CountMenultems()

CountMenus()

MenultemMacro$(),
MenultemText$()

MenuText$()

ToolsCustomizeMenuBar

Now returns the number of all
menu items on the specified menu,
not just those that differ from the
defaults

Returns the number of menus of
the specified type

Now return information about any
menu item, not just those that
differ from the defaults. Note that
these functions were previously
MenuMacro$() and MenuText$().
Now returns the name of a
shortcut menu or a menu on the
menu bar instead of the text of a
menu item.

Adds, removes, or renames menus
on the menu bar.

Sdl ection Statements and Functions

GetSel EndPos

GetSel StartPos
GetText$()

SelectCurAlignment,
SelectCurColor,
SelectCurFont,
SelectCurTndent,
SelectCurSpacing,
SelectCurTabs

SelectCurSentence

SelectCurWord

SetSelRange

Returns the character position of
the end of the selection relative to
the start of the document
Returns the character position of
the start of the selection relative to
the start of the document

Returns the text (unformatted)
between and including two
specified character positions
Extend the selection forward until
text with different settings for
alignment, color, font, indents,
spacing, or tab stopsis
encountered

Selects the entire sentence
containing the insertion point
Selects the entire word containing
the insertion point

Selects characters between two
specified character positions
relative to the start of the
document

String Functions

CleanString$() Changes nonprinting characters

— and specia Word charactersto
spaces (ANSI character code 32)

DOSToWin$(), Trandate astring from the origina

WinToDOS$() equipment manufacturer (OEM)
character set to the Windows
character set, and vice versa

LTrim$(), Remove leading and trailing
:ﬁ Trm$() spaces, respectively, from a

specified string

Window Control Statements and Functions

AppMaximize,
AppMinimize,
AppMove,
AppResiore,
AppSize

AppWindowHeight,
AppWindowWidth,
DocWindowHeight,
DocWindowWidth

AppWindowPosL €ft,
AppWindowPosTop,
DocWindowPosL eft,
DocWindowPosTop

Now take an optional argument for
specifying any open application
window. AppMove and AppSize
now use points as the unit of
measure. AppMaximize,
AppMinimize, and AppRestore
have corresponding functions.

Set the height of awindow (in
points) without affecting the
width, and vice versa. All these
statements have corresponding
functions.

Set the horizontal position of a
window (in points) without
affecting the vertical position, and
viceversa. All these statements
have corresponding functions.

Miscellaneous Statements and Functions

CountDocumentVars(),

GetDocumentVarg)),

GetDocumentVarName$(),

SetDocumentVar
FileNamelnfo$()

GetPrivateProfileString$(),
SetPrivaieProfileString

IsTemplateDirty()

PathFromM acPath$()

SaveTemplate

ScreenUpdating

Sel ectionFileName$()

SetTemplateDirty

SortArray

Stop

WaitCursor

Manage document variables.

Returns all or part of the path and
filename of the specified file.
Store valuesin private settings
files; retrieve values from private
settings files.

Returns a value indicating whether
the active template has changed
since it was last saved. Note that
IsDirty() has changed to
IsDocumentDirty().

Converts a Macintosh path and
filename to avalid path and
filename for the current operating
system.

Saves changes to the active
template or the global template.
Controls whether changes are
displayed on your monitor while a
macro is running.

Returns the full path and filename
of the active document if it has
been saved. If the document has
not been saved, or if the active
window is a macro-editing
window, returns the current path
followed by abackslash (\).
Controls whether Word recognizes
atemplate as changed since the
last time the template was saved.
Note that SetDirty has changed to
SetDocumentDirty.

Sorts the elementsin a specified
numeric or string array
alphanumerically. This statement
is especially useful for sorting
arrays that fill list boxesin a user-
defined dialog box.

Now includes an argument to
suspend the macro without
displaying an error message.
Changes the mouse pointer from
the current pointer to an hourglass,
or vice versa

WordBasic Statements and Functions by Category

WordBasic keywords are listed here by category. Refer to this section when you know what you want to
do but not which commands you need to accomplish the task, or when you want to learn about related
statements and functions. Keywords appear alphabetically in each list; some keywords appear in more than
one category.

Application Control

AutoCorrect

AutoText

Basic File Input/Output
Bookmarks

Borders and Frames

Branching and Control

Bullets and Numbering

Character Formatting
Customization

Date and Time

Definitions and Declarations
Dialog Box Definition and Control
Disk Access and Management
Documents, Templates, and Add-ins
Drawing

Dynamic Data Exchange (DDE)
Editing

Environment

Fields

Finding and Replacing

Footnotes, Endnotes, and Annotations
Forms

Moving the Insertion Point and Selecting
Object Linking and Embedding
Outlining and Master Documents
Paragraph Formatting

Proofing

Section and Document Formatting
Strings and Numbers

Style Formatting

Tables

Tools

View

Windows

Application Control
AppActivate

AppClose

AppCount()

AppGetNames, AppGetNames()
AppHide

Applnfo$()

ApplsRunning()

AppMaximize, AppMaximize()
AppMinimize, AppMinimize()
AppMove

AppRestore, AppRestore()
AppSendMessage

AppShow

AppSize

AppWindowHeight, AppWindowHeight()
AppWindowPosL eft, AppWindowPosL eft()
AppWindowPosT op, AppWindowPosTop()
AppWindowWidth, AppWindowWidth()
ControlRun

DDEExecute

DDElnitiate()

DDEPoke

DDERequest$()

DDETerminate
DDETerminateAll

DiaogEditor

ExitWindows

FileExit

GetSystemlinfo, GetSystemlInfo$()
MicrosoftAccess

MicrosoftExcel

MicrosoftFoxPro

MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule
MicrosoftSysteminfo
RunPrintManager

SendKeys

Shell

AutoCorrect

GetAutoCorrect$()

ToolsAutoCorrect

ToolsAutoCorrectDays, ToolsAutoCorrectDays()
ToolsAutoCorrectlnitial Caps, ToolsAutoCorrectlnitial Caps()
ToolsAutoCorrectReplaceText, ToolsAutoCorrectReplaceText()
ToolsAutoCorrectSentenceCaps, ToolsAutoCorrectSentenceCaps()
ToolsAutoCorrectSmartQuotes, ToolsAutoCorrectSmartQuotes()

AutoText

AutoText
AutoTextName$()
CountAutoTextEntries()
EditAutoText
GetAutoText$()
InsertAutoText
Organizer

SetAutoText

Basic File Input/Output
Close

Eof()

Input
Input$()
Line Input
Lof()

Open

Print.

Read

Seek, Seek()
Write

Bookmarks
BookmarkName$()
CmpBookmarks()
CopyBookmark
CountBookmarks()
EditBookmark
EmptyBookmark()
ExistingBookmark()
GetBookmark$()
SetEndOfBookmark
SetStartOf Bookmark

Borders and Frames
BorderBottom, BorderBottom()
Borderinside, Borderlnside()
BorderL eft, BorderL eft()
BorderLineStyle, BorderLineStyle()
BorderNone, BorderNone()
BorderOutside, BorderOutside()
BorderRight, BorderRight()
BorderTop, BorderTop()
FormatBordersAndShading
FormatDefineStyleBorders
FormatDefineStyleFrame
FormatFrame

InsertFrame

RemoveFrames

ShadingPattern, ShadingPattern()
ViewBorderToolbar

Branching and Control
Call

For...Next
Function...End Function
Goto

If...Then...Else

On Error

OnTime

Select Case

Stop

Sub...End Sub
While...Wend

Bullets and Numbering

DemoteL ist

FormatBullet

FormatBulletDefault, FormatBulletDefault()
FormatBulletsAndNumbering
FormatDefineStyleNumbers
FormatMultilevel

FormatNumber

FormatNumberDefault, FormatNumberDefault()
PromotelList

RemoveBulletsNumbers

SkipNumbering, SkipNumbering()
ToolsBulletListDefault
ToolsBulletsNumbers
ToolsNumberListDefault

Character Formatting
AllCaps, AllCaps()

Bold, Bold()

CharColor, CharColor()
CopyFormat

CountFonts()

CountL anguages()
DottedUnderline, DottedUnderline()
DoubleUnderline, DoubleUnderling()
Font, Font$()

FontSize, FontSize()
FontSizeSelect
FontSubstitution
FormatAddrFonts
FormatChangeCase
FormatDefineStyleFont
FormatDefineStylel ang
FormatFont
FormatRetAddrFonts
GrowFont
GrowFontOnePoint

Hidden, Hidden()

Italic, Italic()

Language, Language$()
Normal FontPosition

Normal FontSpacing
PasteFormat

ResetChar, ResetChar()
ShrinkFont
ShrinkFontOnePoint
SmallCaps, SmallCaps()
Strikethrough, Strikethrough()
Subscript, Subscript()
Superscript, Superscript()
Symbol Font

ToolsLanguage

Underline, Underline()
WordUnderline, WordUnderline()

Customization
AddButton
ChooseButtonlmage
CopyButtonlmage
CountKeys()
CountMenultems()
CountMenus()
CountTool barButtons()
CountToolbars()
DeleteButton
EditButtonlmage
KeyCode()
KeyMacro$()
MenultemM acro$()
MenultemText$()
MenuMode
MenuText$()
MoveButton
MoveToolbar
NewToolbar
PasteButtonlmage
RenameMenu
ResetButtonlmage
SizeToolbar
ToolbarButtonM acro$()
ToolbarName$()
ToolbarState()
ToolsCustomize
ToolsCustomizeK eyboard
ToolsCustomizeM enuBar
ToolsCustomizeMenus

Date and Time
Date$()
DateSerial ()
DateValue()
Day()

Days360()

Hour()
InsertDateField
InsertDateTime
InsertTimeField

TimeSerial()
TimeVaue()

Today()
ToolsRevisionDate()
ToolsRevisionDate$()
Weekday()

Year()

Definitions and Declarations
Declare

Dim

Let

Redim

Dialog Box Definition and Control
Begin Dialog...End Dialog
CancelButton

CheckBox

ComboBox

Dialog, Dialog()
DialogEditor
DlgControlld()

DlgEnable, DIgEnabl&()
DlgFilePreview, DIgFilePreview$()
DlgFocus, DIgFocus$()
DigListBoxArray, DIgListBoxArray()
DlgSetPicture

DlgText, DigText$()
DlgUpdateFilePreview
DlgValue, DigValug()
DlgVisible, DigVisible()
DropListBox

FilePreview
GetCurValues

GroupBox

InputBox$()

ListBox

MsgBox, MsgBox()
OKButton

OptionButton
OptionGroup

Picture

PushButton

Text

TextBox

Disk Access and Management
ChDefaultDir

ChDir

Connect

CopyFile

CountDirectories()

DefaultDir$()

Files$()

GetAttr()

GetDirectory$()

Documents, Templates, and Add-ins
AddAddin, AddAddIn()
AddInState, AddinState()
ClearAddins

Converter$()

ConverterL ookup()
CopyFile

CountAddIns()
CountDocumentVars()
CountFiles()
CountFoundFiles()
DeleteAddIn

Disablelnput

DocClose
DocumentStatistics
FileClose

FileCloseAll
FileConfirmConversions, FileConfirmConversions()
FileFind

FileList

FileName$()
FileNameFromWindow$()
FileNamelnfo$()

FileNew

FileNewDefault
FileNumber

FileOpen

FilePageSetup

FilePrint

FilePrintDefault
FilePrintPreview, FilePrintPreview()
FilePrintPreviewFull Screen
FilePrintPreviewPages, FilePrintPreviewPages()
FilePrintSetup
FileRoutingSlip

Files$()

FileSave

FileSaveAll

FileSaveAs

FileSendMail
FileSummarylnfo
FileTemplates
FoundFileName$()
GetAddInID()
GetAddinName$()
GetAttr()
GetDocumentVar$()
GetDocumentVarName$()
InsertFile

Kill

LockDocument, L ockDocument()
MacroFileName$()

Name

Organizer

PathFromM acPath$()
SaveTemplate

Sel ectionFileName$()

SetAttr

SetDocumentVar, SetDocumentVar()
ToolsOptionsFilel ocations

Tool sOptionsPrint

Drawing

DrawAlign

DrawArc
DrawBringForward
DrawBringlnFrontOf Text
DrawBringToFront
DrawCallout
DrawClearRange
DrawCount()
DrawCountPolyPoints()
DrawDisassemblePicture
DrawEllipse
DrawExtendSel ect
DrawFlipHorizontal
DrawFlipVertical
DrawFreeformPolygon
DrawGetCallout Textbox
DrawGetPolyPoints
DrawGetType()
DrawGroup
DrawlnsertWordPicture
DrawLine
DrawNudgeDown
DrawNudgeDownPixel
DrawNudgel eft
DrawNudgel eftPixel
DrawNudgeRight
DrawNudgeRightPixel
DrawNudgeUp
DrawNudgeUpPixel
DrawRectangle
DrawResetWordPicture
DrawReshape
DrawRotatel_eft
DrawRotateRight
DrawRoundRectangle
DrawSelect, DrawSel ect()
DrawSelectNext

DrawSel ectPrevious
DrawSendBackward
DrawSendBehindText
DrawSendToBack
DrawSetCalloutTextbox
DrawSetlnsertToAnchor
DrawSetInsertToTextbox
DrawSetPolyPoints
DrawSetRange, DrawSetRange()
DrawSnapToGrid
DrawTextBox

DrawUngroup
DrawUnselect
FormatCallout
FormatDrawingObject
FormatPicture
InsertDrawing
SelectDrawingObjects
ToggleScribbleMode
ViewDrawingToolbar

Dynamic Data Exchange (DDE)
DDEExecute

DDEl nitiate()

DDEPoke

DDERequest$()

DDETerminate

DDETerminateAll

SendK eys

Editing
AutoMarklndexEntries
Cancel

ChangeCase, ChangeCase()
CopyText
DeleteBackWord
DeleteWord

EditClear

EditCopy

EditCut

EditFind

EditGoTo

EditLinks

EditObject

EditPaste
EditPasteSpecial
EditPicture

EditRedo

EditRepeat
EditReplace
EditTOACategory
EditUndo

ExtendM ode()

Insert
InsertAddCaption
InsertAutoCaption
InsertBreak
InsertCaption
InsertCaptionNumbering
InsertColumnBreak
InsertCrossReference
Insertlndex

I nsertPageBreak
InsertPageNumbers
InsertSpike
InsertSymbol
InsertTableOf Authorities
InsertTableOf Contents
InsertTableOfFigures
MarkCitation
MarklndexEntry
MarkTableOf ContentsEntry
MoveText

OK

Eertype, Overtype()
Spike
ToolsOptionsEdit

Environment

Applnfo$()

Beep

CommandValid()

DOSToWin$()

Environ$()

Err

Error

GetPrivateProfileString$()
GetProfileString$()
GetSystemlinfo, GetSystemlInfo$()
IsDocumentDirty()

| sExecuteOnly()

IsMacro()

IsTemplateDirty()
LockDocument, LockDocument()
MacroFileName$()
MicrosoftSysteminfo
ScreenRefresh

ScreenUpdating, ScreenUpdating()
Sellnfo()

SelType, SelType()
SetDocumentDirty
SetPrivateProfileString, SetPrivateProfileString()
SetProfileString
SetTemplateDirty

ViewMenus()

WaitCursor

WinToDOS$()

Fields
CheckBoxFormField
CountMergeFields()
DoFieldClick
DropDownFormField
EnableFormField
FormFieldOptions
GetFieldData$()
GetMergeFiel d$()
InsertDateField
InsertDateTime
InsertField
InsertFieldChars
InsertFormField
InsertMergeField
InsertPageField
InsertTimeField
LockFields
MergeFieldName$()
NextField, NextField()
PrevField, PrevFied()
PutFieldData
TextFormField
ToggleFieldDisplay
ToolsManageFields
UnlinkFields
UnlockFields
UpdateFields
UpdateSource
ViewFieldCodes, ViewFieldCodes()

Finding and Replacing
EditFind

EditFindClearFormatting
EditFindFont
EditFindFound()
EditFindLang
EditFindPara
EditFindStyle
EditReplace
EditReplaceClearFormatting
EditReplaceFont
EditReplacel ang
EditReplacePara
EditReplaceStyle
RepeatFind

Footnotes, Endnotes, and Annotations
AnnotationRef FromSel $()
EditConvertAllEndnotes
EditConvertAllFootnotes
EditConvertNotes

EditSwapAllNotes
GoToAnnotationScope
InsertAnnotation

I nsertFootnote

NoteOptions

ResetNoteSepOrNotice
ShowAnnotationBy

ViewAnnotations, ViewAnnotations()
ViewEndnoteArea, ViewEndnoteArea()
ViewEndnoteContNotice
ViewEndnoteContSeparator
ViewEndnoteSeparator
ViewFootnoteArea, ViewFootnoteArea()
ViewFootnoteContNotice
ViewFootnoteContSeparator
ViewFootnotes, ViewFootnotes()
ViewFootnoteSeparator

Forms

AddDropDownltem
CheckBoxFormField
ClearFormField
DropDownFormField
EnableFormField
FormFieldOptions
FormShading, FormShading()
GetFormResult(), GetFormResult$()
InsertFormField
RemoveAllDropDownltems
RemoveDropDownltem
SetFormResult
TextFormField
ToolsProtectDocument
ToolsProtectSection
ToolsUnprotectDocument

Help

Help

HelpAbout
HelpActivewWindow
HelpContents

Hel pExamplesAndDemos
Helplndex

HelpKeyboard
HelpPSSHelp
HelpQuickPreview
HelpSearch
HelpTipOfTheDay
HelpTool

HelpUsingHelp
HelpWordPerfectHelp
HelpwordPerfectHel pOptions

Macros
CommandValid()
CountMacros()
DisableAutoMacros

I sExecuteOnly()
IsMacro()

KeyMacro$()
MacroCopy
MacroDesc$()

M acroFileName$()
MacroName$()
MacroNameFromWindows$()
MenultemM acro$()
OnTime

Organizer
PauseRecorder

REM

ShowVars
ToolbarButtonMacro$()
ToolsMacro

Mail Merge

CountMergeFields()

GetMergeFiel d$()

InsertMergeField

MailMerge

MailMergeA skToConvertChevrons, MailMergeAskToConvertChevrons()
MailM ergeCheck
MailMergeConvertChevrons, MailMergeConvertChevrons()
MailM ergeCreateDataSource

MailM ergeCreateHeader Source
MailMergeDataForm
MailMergeDataSource$()

MailM ergeEditDataSource

MailM ergeEditHeader Source

MailM ergeEditMainDocument
MailMergeFindRecord

MailM ergeFirstRecord

MailM ergeFoundRecord()

MailM ergeGotoRecord, MailMergeGotoRecord()
MailMergeHel per

MailMergel nsertAsk

MailMergel nsertFillln

MailMergel nsertl f

MailMergel nsertMergeRec

MailM ergel nsertM ergeSeq

MailM ergel nsertNext

MailMergel nsertNextlf

MailMergel nsertSet

MailMergel nsertSkipl f

MailMergel astRecord
MailMergeMainDocumentType, MailMergeMainDocumentType()
MailMergeNextRecord

MailM ergeOpenDataSource

MailM ergeOpenHeader Source
MailMergePrevRecord

MailM ergeQueryOptions

MailMergeReset

MailMergeState()

MailMergeToDoc

MailMergeToPrinter

MailMergeViewData, MailMergeViewData()
MergeFieldName$()
ToolsAddRecordDefault
ToolsRemoveRecordDefault

Moving the Insertion Point and Selecting
AtEndOfDocumenty()
AtStartOf Document()
Cancel

CharLeft, CharLeft()
CharRight, CharRight()
ColumnSelect
EditSelectAll
EndOfColumn, EndOfColumn()
EndOfDocument, EndOfDocument()
EndOfLine, EndOfLing()
EndOfRow, EndOf Row()
EndOfWindow, EndOfWindow()
ExtendM ode()
ExtendSelection
GetSelEndPos()

GetSel StartPos()
GetText$()

GoBack
GoToAnnotationScope
GoToHeaderFooter
GoToNextltem
GoToPreviousltem
HLine

HPage

HScroll, HScroll()

Insert

LineDown, LineDown()
LineUp, LineUp()
NextCell, NextCell()
NextField, NextField()
NextObject

NextPage, NextPage()
NextWindow

OtherPane

PageDown, PageDown()
PageUp, PageUp()
ParaDown, ParaDown()
ParalUp, ParaUp()
PrevCell, PrevCell()
PrevField, PrevFied()
PrevObject

PrevPage, PrevPage()
PrevWindow
SelectCurAlignment
SelectCurColor
SelectCurFont
SelectCurlndent
SelectCurSentence

SelectCurSpacing

SelectCurTabs

SelectCurWord

SelType, SelType()

SentLeft, SentLeft()

SentRight, SentRight()
SetSelRange

ShrinkSelection

StartOf Column, StartOfColumn()
StartOf Document, StartOf Document()
StartOfLine, StartOfLing()
StartOfRow, StartOfRow()
StartOf Window, StartOfWindow()
TableSelectColumn
TableSelectRow
TableSelectTable

VLine

VPage

V Serall, VScroll()

WordL eft, WordL eft()
WordRight, WordRight()

Object Linking and Embedding
ActivateObject
ConvertObject
EditLinks
EditObject
EditPasteSpecial
EditPicture
FileClosePicture
InsertChart
InsertDatabase
InsertEquation
InsertExcel Table
I nsertObject
InsertPicture

I nsertSound
InsertWordArt

Outlining and Master Documents
CreateSubdocument
DemoteToBodyText
InsertSubdocument

M ergeSubdocument

OpenSubdocument

OutlineCollapse

OutlineDemote

OutlineExpand

OutlineLevel()

OutlineMoveDown

OutlineMoveUp

OutlinePromote

OutlineShowFirstLine, OutlineShowFirstLing()
OutlineShowFormat
RemoveSubdocument
ShowAllHeadings
ShowHeadingNumber
SplitSubdocument
ViewMasterDocument, ViewM asterDocument()
ViewOutline, ViewOutling()
ViewToggleMasterDocument

Paragraph Formatting

CenterPara, CenterPara()

CloseUpPara

CopyFormat

FormatDefineStylePara
FormatDefineStyleT abs

FormatDropCap

FormatParagraph

FormatTabs

Hangingl ndent

Indent

InsertPara

JustifyPara, JustifyPara()

LeftPara, LeftPara()

NextTab()

OpenUpPara

ParaK eepLinesT ogether, ParaK eepLinesTogether()
ParaK eepWithNext, Parak eepWithNext()
ParaPageBreakBefore, ParaPageBreakBefore()
ParaWidowOrphanControl, ParaWidowOrphanControl ()
PasteFormat

PrevTab()

ResetPara, ResetPara()

RightPara, RightPara()

SpaceParal, SpaceParal()

SpaceParalb, SpaceParal5()

SpacePara2, SpacePara?()

TabLeader$()

TabType()

UnHang

Unindent

Proofing

CountT ool sGrammar Stati stics()
ToolsGetSpelling, ToolsGetSpelling()
ToolsGetSynonyms, ToolsGetSynonyms()
ToolsGrammar
ToolsGrammarStatisticsArray
ToolsHyphenation
ToolsHyphenationManual
ToolsOptionsGrammar
ToolsOptionsSpelling

ToolsSpelling

ToolsSpell Selection

ToolsThesaurus

Section and Document Formatting
CloseViewHeaderFooter
FormatAutoFormat
FormatColumns
FormatHeaderFooterLink
FormatHeadingNumber
FormatHeadingNumbering
FormatPageNumber
FormatSectionL ayout
GoToHeaderFooter
InsertSectionBreak
ShowNextHeaderFooter
ShowPrevHeaderFooter
ToggleHeaderFooterLink
ToggleMainTextLayer
TogglePortrait

Tool sOptionsAutoFormat
ViewFooter, ViewFooter()
ViewHeader, ViewHeader()

Strings and Numbers

CleanString$()
InStr()

Int()
L Case$()

Style Formatting
CountStyles()
FormatDefineStyleBorders
FormatDefineStyleFont
FormatDefineStyleFrame
FormatDefineStylel ang
FormatDefineStyleNumbers
FormatDefineStylePara
FormatDefineStyleTabs
FormatStyle
FormatStyleGallery
Normal Style

Organizer

Style

StyleDesc$()
StyleName$()

Tables

FieldSeparator$, Fiel dSeparator$()
InsertExcel Table
NextCell, NextCell()
PrevCell, PrevCell()
TableAutoFormat
TableAutoSum
TableColumnWidth
TableDeleteCells
TableDeleteColumn
TableDeleteRow
TableFormula
TableGridlines, TableGridlines()
TableHeadings, TableHeadings()
TablelnsertCells
TablelnsertColumn
TablelnsertRow
TablelnsertTable
TableMergeCells
TableRowHeight
TableSelectColumn
TableSelectRow
TableSdlectTable
TableSort
TableSortAToZ
TableSortZToA
TableSplit
TableSplitCells
TableToText
TableUpdateAutoFormat
TextToTable

Tools

Tool sAdvancedSettings
ToolsCalculate, ToolsCalculate()
ToolsCompareVersions
ToolsCreateEnvelope
ToolsCreatel abels
ToolsCustomize
ToolsHyphenation

Tool sHyphenationManual
ToolsLanguage
ToolsMergeRevisions
ToolsOptions
ToolsOptionsAutoFormat
ToolsOptionsCompatibility
ToolsOptionsEdit
ToolsOptionsFilel ocations
ToolsOptionsGeneral
ToolsOptionsPrint
ToolsOptionsRevisions
ToolsOptionsSave
ToolsOptionsUserInfo
ToolsOptionsView
ToolsProtectDocument
ToolsProtectSection
ToolsRepaginate
ToolsReviewRevisions
ToolsRevisionAuthor$()
ToolsRevisionDate()
ToolsRevisionDate$()
ToolsRevisions
ToolsRevisionType()
ToolsShrinkToFit
ToolsUnprotectDocument
ToolswWordCount

View

ClosePreview
CloseViewHeaderFooter
FilePrintPreview, FilePrintPreview()
FilePrintPreviewFull Screen
FilePrintPreviewPages, FilePrintPreviewPages()
Magnifier, Magnifier()

ShowAll, ShowAll()
ShowNextHeaderFooter
ShowPrevHeaderFooter

ToggleFull

TogglePortrait

ToolsOptionsView

ViewAnnotations, ViewAnnotations()
ViewBorderToolbar

ViewDraft, ViewDraft()
ViewDrawingToolbar
ViewEndnoteArea, ViewEndnoteArea()
ViewEndnoteContNotice
ViewEndnoteContSeparator
ViewEndnoteSeparator
ViewFieldCodes, ViewFieldCodes()
ViewFooter, ViewFooter()
ViewFootnoteArea, ViewFootnoteArea()
ViewFootnoteContNotice
ViewFootnoteContSeparator
ViewFootnotes, ViewFootnotes()
ViewFootnoteSeparator

ViewHeader, ViewHeader()
ViewMasterDocument, ViewM asterDocument()
ViewMenus()

ViewNormal, ViewNormal()
ViewOutline, ViewOutling()
ViewPage, ViewPage()

ViewRibbon, ViewRibbon()
ViewRuler, ViewRuler()
ViewStatusBar, ViewStatusBar()
ViewToggleMasterDocument
ViewToolbars

ViewZoom

ViewZoom100

ViewZoom200

ViewZoom75

ViewZoomPageWidth
ViewZoomWholePage

Windows

Activate

AppActivate

AppClose

AppCount()

AppGetNames, AppGetNames()
AppHide

AppMaximize, AppMaximize()
AppMinimize, AppMinimize()

AppMove

AppRestore, AppRestore()

AppShow

AppSize

AppWindowHeight, AppWindowHeight()
AppWindowPosL eft, AppWindowPosL eft()
AppWindowPosT op, AppWindowPosTop()
AppWindowWidth, AppWindowWidth()
ClosePane

CountWindows()

DocClose

DocMaximize, DocMaximize()
DocMinimize, DocMinimize()

DocMove

DocRestore

DocSize

DocSplit, DocSplit()

DocWindowHeight, DocWindowHeight()
DocWindowPosL eft, DocWindowPosL eft()
DocWindowPosTop, DocWindowPosTop()
DocWindowWidth, DocWindowWidth()
ExitWindows

FileNameFromwindow$()

Hel pActivewWindow

IsMacro()

NextWindow

OtherPane

PrevWindow

Window()

WindowArrangeAll

WindowL ist

WindowName$()

WindowNewWindow

WindowNumber

WindowPang()

Error Messages

When you run amacro and an error occurs, you can get more information by pressing F1 or choosing the
Help button in the error message box. The following lists, the first for WordBasic error messages and the
second for Word error messages, includes numbers you can use when trapping errors. For more
information on error trapping, see On Error statement.

WordBasic Error Messages
Error # Message

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range
11 Division by zero

14 Out of string space

22 Invalid array dimension
24 Bad parameter

25 Out of memory (stack space)
26 Dialog needs End Dialog or a push button
28 Directory already exists
39 CASE EL SE expected
51 Internal error

52 Bad file name or number
53 File not found

54 Bad file mode

55 File already open

57 Device /O error

62 Input past end of file

64 Bad file name

67 Too many files

74 Rename across disks

75 Path/File access error

76 Path not found

100 Syntax error

101 Comma missing

102 Command failed

103 Dialog record variable expected
104 EL SE without IF

105 END IF without IF

109 INPUT missing
111 Expression too complex

112 I dentifier expected

113 Duplicate label

114 Label not found

115 Right parenthesis missing
116 Argument-count mismatch
117 Missing NEXT or WEND
118 Nested SUB or FUNCTION definitions
119 NEXT without FOR

120 Array aready dimensioned
122 Type mismatch

123 Undefined dialog record field

124
125
126
127
129
130
131
132
133
134
137
138
139
140
141
142
143

Unknown Command, Subroutine, or Function

Unexpected end of macro

WEND without WHILE

Wrong number of dimensions

Too many nested control structures

SELECT without END SELECT

Illegal REDIM to dialog record

Externa call caused string overflow

Wrong number or type of arguments for DLL call

An argument to a function contained an illegal date or time.
The specified path is not avalid path option.

The current selection cannot be modified by this command.
Only one user dialog may be up at any time.

Dialog control identifier does not match any current control.

The () statement is not available on this dialog control type.
Specified application is not currently running

