
ewl shareres, T3EWCLASS, $-!fJumpToHelpFile(hWndApp%c`wrdbasic.hlp'%c0) $dllres:wordres.dll:
HWBFYProgramming with
Microsoft Word

Word Help Contents

WordBasic Statements and Functions
Conventions
Statements and Functions by Category
Statements and Functions Index

More WordBasic Information
What's New in WordBasic
Creating Dynamic Dialog Boxes
Key Examples in WordBasic Help
Operators and Predefined Bookmarks
Error Messages
Toolbar Button Images and Numbers
Converting Word Version 2.x Macros
The Microsoft Word Developer's Kit
Microsoft Solution Providers

Using special characters in a document search
In a FileFind instruction, you can use special characters to search for documents by using approximate
criteria, instead of exact criteria. When you specify search criteria, you can use wildcard characters and
search operators to control a search in specific ways.
Character Meaning

? (question
mark)

Match any single character. For
example, specify "gr?y" to
match both "gray" and "grey."

* (asterisk) Match any number of characters.
For example, specify "*.txt" to
find all files that have the .TXT
extension.

" " (quotation
marks, Chr$
(34))

Matches all the characters,
including spaces or punctuation,
within the quotation marks. For
example, specify Chr$(34) +
"modern dance" + Chr$
(34) to find the phrase modern
dance.

\ (backslash) Treats the following character
(space, asterisk, question mark,
comma, ampersand, or tilde) as a
normal character. For example,
specify "\?" to indicate a true
question mark.

, (comma) Logical OR. The information may
match any or all items, but it must
match at least one item.
For example, specify "dance,
modern" to find all documents
that contain either "dance" or
"modern."

& (ampersand)
or (space)

Logical AND. The information
must match all of the items in the
list.
For example, specify
"dance&modern" or "dance
modern" to find all documents
that contain both words.

~ (tilde) Logical NOT. The information
must not match this item.
For example, specify "~
modern" to exclude files that
contain the word "modern."

See also
FileFind
Advanced search criteria

Advanced search criteria
If you set .PatternMatch to 1 in a FileFind, EditFind, or EditReplace instruction, you can specify the
following advanced search criteria.
To find Operator Examples

Any single character ? "s?t" finds "sat,"
"set," and "sit."

Any string of
characters

* "s*d" finds "sad,"
"started," and "said.
"

One of the specified
characters

[] "w[io]n" finds
"win" and "won."

Any single character
in this range

[-] "[r-t]ight"
finds "right," "sight,
" and "tight." Ranges
must be in ascending
order.

Any single character
except the
characters inside the
brackets

[!] "m[!a]st" finds
"mist," "most," and
"must," but not
"mast."
"t[!ou]ck" finds
"tack" and "tick," but
not "tock" or "tuck."

Any single character
except characters in
the range inside the
brackets

[!x-z] "t[!a-m]ck"
finds "tock" and
"tuck," but not
"tack" or "tick."

Exactly n
occurrences of the
previous character
or expression

{n} "fe{2}d" finds
"feed" but not "fed."

At least n
occurrences of the
previous character
or expression

{n,} "fe{1,}d" finds
"fed" and "feed."

From n to m
occurrences of the
previous character
or expression

{n,m} "10{1,3}" finds
"10," "100," and
"1000."

One or more
occurrences of the
previous character
or expression

@ "lo@t" finds "lot"
and "loot."

The beginning of a
word

< "<(inter)" finds
"interesting" and
"intercept," but not
"splintered."

The end of a word > "(in)>" finds
"in" and "within,"
but not "interesting.
"

You can use parentheses around parts of the search criteria to indicate the order of evaluation and to group
parts of expressions, as shown in the previous examples.
To search for operators as if they were characters, precede them with a backslash (\). For example, to find
a question mark, specify .Find = "\?" in an EditFind instruction.
One other operator that you can specify for .Replace in an EditReplace instruction is \num. This operator
rearranges expressions specified in .Find in the order specified by .Replace. If you specify .Find = "
(Newton) (Christie)" and .Replace = "\2 \1", the text would change from "Newton
Christie" to "Christie Newton."

See also
EditFind
EditReplace
FileFind
Finding and replacing special characters by using keyboard codes
Using special characters in a document search

Finding and replacing special characters by using keyboard codes
To find or replace special characters using an EditFind or EditReplace instruction, specify the following
codes for the .Find and .Replace arguments. Press SHIFT+6 for the ^ symbol and make sure to use
lowercase letters.

Special characters
To specify Specify For
Paragraph mark
(

)
"^p" .Find or .

Replace
Tab character
(

)
"^t" .Find or .

Replace
Annotation mark "^a" .Find
ANSI or ASCII
characters

"^0nnn"
where nnn is
the character
number

.Find or .
Replace

Any character "^?" .Find
Any digit "^#" .Find
Any letter "^$" .Find
Caret character "^^" .Find or .

Replace
Clipboard contents "^c" .Replace
Text specified by .
Find

"^&" .Replace

Endnote mark "^e" .Find
Field "^d" .Find
Footnote mark "^f" .Find
Graphic "^g" .Find

Breaks
To specify Specify For
Column break
(

)
"^n" .Find or .

Replace
Line break
(

)
"^l" .Find or .

Replace
Manual page break
(

)
"^m" .Find or .

Replace
Section break
(

)
"^b" .Find

Hyphens and spaces
To specify Specify For

Em dash "^+" .Find or .

Replace
En dash "^=" .Find or .

Replace
Nonbreaking space
(

)
"^s" .Find or .

Replace
Nonbreaking hyphen
(

)
"^~" .Find or .

Replace
Optional hyphen
(

)
()

"^-" .Find or .
Replace

White space
(

)
"^w" .Find

You cannot search for hyphens that Word inserted automatically with the Hyphenation command (Tools
menu).

Note
() If you omit the optional hyphen code, Word finds all matching text, including text with optional hyphens.

If you include the optional hyphen code, Word finds only words with optional hyphens in the same position.
For example, if you specify .Find = "type^-writer" Word finds "type-writer", but not
"typewriter".

() Any number and combination of normal and nonbreaking spaces, tab characters, and paragraph marks.

See also
EditFind
EditReplace
Advanced search criteria

Auto Macros
By giving a macro a special name, you can run it automatically when you perform an operation such as
starting Word or opening a document. Word recognizes the following names as automatic, or "auto,"
macros.
Macro name When it runs

AutoExec When you start Word
AutoNew Each time you create a new

document
AutoOpen Each time you open an existing

document
AutoClose Each time you close a document
AutoExit When you quit Word

Just like other macros, auto macros can be defined either globally or for a particular template. The only
exception is the AutoExec macro, which will not run automatically unless it is stored in the Normal
template or a global template stored in the directory specified as the Startup directory.
Tip
You can hold down the SHIFT key to prevent auto macros from running. For example, if you create a new
document based on a template that contains an AutoNew macro, you can prevent the AutoNew macro
from running by holding down SHIFT when you click the OK button in the New dialog box (File menu) and
continuing to hold down SHIFT until the new document is displayed. In a macro that might trigger an auto
macro, you can use DisableAutoMacros to prevent auto macros from running.

Creating Dynamic Dialog Boxes
To create a dynamic dialog box, you start with a standard dialog box definition created with Begin Dialog.
..End Dialog. You then add three elements to make the dialog box dynamic:

A dialog function argument in the Begin Dialog instruction that calls the dialog function. The .
FunctionName argument matches the name of the dialog function.

String identifiers for any dialog box controls that the dialog function acts on or gets information
from. Most of the instructions in a custom dialog box definition already include string identifiers for the
controls they define.

Note that you can also use numeric identifiers to refer to controls in a dialog box definition (0
(zero) for the first control, 1 for the second control, and so on). Although this may improve performance
when a dialog box contains many controls, instructions that use numeric identifiers are more difficult to
read than instructions that use string identifiers.

A dialog function. The dialog function responds to events and changes the appearance of the dialog
box. All the instructions that are carried out while the dialog box is displayed are either placed within this
function or in subroutines and user-defined functions called from this function.

The following topics describe WordBasic statements and functions used in dialog functions and provide
examples of their use. For more information, see Dialog Function Syntax.
DlgControlId()
DlgEnable, DlgEnable()
DlgFilePreview, DlgFilePreview$()
DlgFocus, DlgFocus$()
DlgListBoxArray, DlgListBoxArray()
DlgSetPicture
DlgText, DlgText$()
DlgUpdateFilePreview
DlgValue, DlgValue()
DlgVisible, DlgVisible()

For a complete discussion of creating dynamic dialog boxes, see Chapter 5, "Working with Custom Dialog
Boxes," in the Microsoft Word Developer's Kit.

See also
Dialog Function Syntax

Dialog Function Syntax
Function FunctionName(ControlID$, Action, SuppValue)

Series of instructions
FunctionName =

value
End Function
A dialog function is associated with a dialog box definition when FunctionName matches the .
FunctionName argument in a Begin Dialog instruction. By default, the dialog function returns 0 (zero)
when the user chooses the OK button, Cancel button, or a push button; a return value of 0 (zero) causes
Word to close the dialog box. To keep the dialog box displayed and allow the user to carry out multiple
commands from the same dialog box, use the syntax FunctionName = value to set FunctionName to a
nonzero value. For an example of this technique, see DlgText Example.
A dialog function takes three required arguments.
Argument Explanation

ControlID$ Receives the identifier string of
the dialog box control associated
with a call to the dialog function.
For example, if the user selects a
check box, the dialog function is
called and the ControlID$
argument receives the identifier
for the check box.

Action Identifies the action that calls the
dialog function. There are six
possible actions that can call the
dialog function, each with a
corresponding Action value. For
more information, see the table of
Action values, below.

SuppValue Receives supplemental
information about a change in a
dialog box control. The
information SuppValue receives
depends on the Action value and
on which control calls the dialog
function. For more information,
see the table of SuppValues,
below.

The following table describes each of the six actions that can call the dialog function.
Action value Meaning

1 Corresponds to dialog box
initialization. This value is passed
before the dialog box becomes
visible.

2 Corresponds to choosing a
command button or changing the
value of a dialog box control (with
the exception of typing in a text
box or combo box). When Action
is 2, ControlID$ corresponds to
the identifier for the control that
was chosen or changed.

3 Corresponds to a change in a text
box or combo box. This value is
passed when a control loses the
focus (for example, when the user
presses the TAB key to move to a
different control) or after the user
clicks an item in the list of a
combo box (an Action value of 2

is passed first). Note that if the
contents of the text box or combo
box do not change, an Action
value of 3 is not passed. When
Action is 3, ControlID$
corresponds to the identifier for
the text box or combo box whose
contents were changed.

4 Corresponds to a change of control
focus. When Action is 4,
ControlID$ corresponds to the
identifier of the control that is
gaining the focus. SuppValue
corresponds to the numeric
identifier for the control that lost
the focus. A dialog function
cannot display a message box or
Word dialog box in response to an
Action value of 4.

5 Corresponds to an idle state. As
soon as the dialog box is
initialized, Word continuously
passes an Action value of 5 while
no other action occurs. If the
dialog function responds to an
Action value of 5, the dialog
function should return a nonzero
value. (If the dialog function
returns 0 (zero), Word continues to
send idle messages only when the
mouse moves.) When Action is 5,
ControlID$ is an empty string ("")
; SuppValue corresponds to the
number of times an Action value
of 5 has been passed so far.

6 Corresponds to the user moving
the dialog box. This value is
passed only when screen updating
is turned off (using a
ScreenUpdating instruction). After
this value is passed and the dialog
function ends, Word refreshes the
screen and then turns screen
updating back on. A dialog
function does not usually need to
respond to an Action value of 6,
but with it you can use the dialog
function to change what will be
displayed when the screen
refreshes. When Action is 6,
ControlID$ is an empty string ("")
; SuppValue is equal to 0 (zero).

The following table describes which SuppValue values are passed when Action is 2 or 3.
Control SuppValue passed

List box, drop-down
list box, or combo
box

Number of the item selected,
where 0 (zero) is the first item in
the list box, 1 is the second item,
and so on

Check box 1 if selected, 0 (zero) if cleared
Option button Number of the option button

selected, where 0 (zero) is the first
option button within a group, 1 is

the second option button, and so
on

Text box Number of characters in the text
box

Combo box If Action is 3, number of
characters in the combo box

Command button A value identifying the button
chosen. This value is not often
used, since the same information is
available from the ControlID$
value. If the OK button is chosen,
SuppValue is 1; if the Cancel
button is chosen, SuppValue is 2.
The SuppValue for push buttons is
an internal number used by Word.
This number is not the same as the
numeric identifier for a push
button, but it does change if the
instruction that defines the push
button changes position within the
dialog box definition.

See also
Creating Dynamic Dialog Boxes

Converting Word Version 2.x Macros
Overview

WW2_ statements and functions
Working with paragraph marks
Modifying startup options
Error checking
Limits in Word
Creating and displaying dialog boxes
Cutting and pasting text
Using SendKeys
Finding and replacing text
Searching for fields
Working with headers and footers
New formatting implementations
Replacing Windows API calls with new statements and functions
Issues of context when calling macros and subroutines
Taking advantage of global templates
Miscellaneous "gotchas"
Naming variables, subroutines and user-defined functions

Overview
Word converts the macros in a Word 2.x template the first time you open the template, create a new
document based on the template, or attach the template to a document using the Templates command (File
menu). (Note that Word 6.0 cannot convert Word 1.x macros directly; open Word 1.x templates first in
Word 2.x, and then in Word 6.0.) After converting a template, you must save it to save the conversion. If
you don't save the template, Word converts the macros again the next time you use the template.
If you want complete control over converting macros (that is, if you don't want Word to automatically
convert your macros), you can convert your macros manually. To do so, open each macro in Word 2.x,
copy the code to a normal document, and save the document. In Word 6.0, open the document and in
either the Normal template or a new custom template, create a macro for each of your original macros,
then copy the text from the document into the macro editing window. Debug each macro to identify which
parts of your code should be changed to produce the same behavior you programmed in Word 2.x.
When Word converts your macros automatically, you may need to modify parts of them by hand to
complete the conversion. This topic attempts to identify areas of your macro to which you may need to pay
special attention to produce the behavior you want from your macro.

WW2_ statements and functions
For improved compatibility, a number of Word 2.x WordBasic statements and functions have been carried
over to Word 6.0 and given the "WW2_" prefix (for example, WW2_CountMenuItems() and
WW2_EditFind). When the macro converter encounters one of these Word 2.x statements or functions, it
substitutes the WW2_ name.
WW2_ functions provide Word 2.x syntax, but they do not behave under Word 2.x assumptions. For
example, WW2_Insert adheres to the setting of the Smart Cut And Paste setting in Word 6.0, and
WW2_EditFind must use Word 6 codes to search for special characters.
Here is the full list of WW2_ statements and functions:
WW2_ChangeCase
WW2_ChangeRulerMode
WW2_CountMenuItems()
WW2_EditFind
WW2_EditFindChar
WW2_EditReplace
WW2_EditReplaceChar
WW2_FileFind
WW2_FileTemplates
WW2_Files$()
WW2_FootnoteOptions
WW2_FormatBordersAndShading
WW2_FormatCharacter
WW2_FormatDefineStyleChar
WW2_GetToolButton()
WW2_GetToolMacro$()
WW2_Insert
WW2_InsertFootnote
WW2_InsertIndex
WW2_InsertSymbol
WW2_InsertTableOfContents
WW2_KeyCode
WW2_MenuMacro$()

WW2_MenuText$()
WW2_PrintMerge
WW2_PrintMergeCheck
WW2_PrintMergeCreateDataSource
WW2_PrintMergeCreateHeaderSource
WW2_PrintMergeHelper
WW2_PrintMergeSelection
WW2_PrintMergeToDoc
WW2_PrintMergeToPrinter
WW2_RenameMenu
WW2_RulerMode
WW2_TableColumnWidth
WW2_TableRowHeight
WW2_ToolsHyphenation
WW2_ToolsMacro
WW2_ToolsOptionsGeneral
WW2_ToolsOptionsKeyboard
WW2_ToolsOptionsMenus
WW2_ToolsOptionsPrint
WW2_ToolsOptionsToolbar
WW2_ToolsOptionsView
WW2_ToolsRevisionsMark
WW2_ViewZoom

Note that CommandValid() takes a string that specifies a command name. Word 6 does not convert this
string to a valid Word 6 command name, nor does it append "WW2_." Check all occurrences of this
function in a converted macro to ensure the name of the command being tested is valid (for example,
change "InsertBookmark" to "WW2_InsertBookmark" or "EditBookmark").
Keep in mind the following details about the behavior of some Word 2.x and WW2_ commands compared
to the corresponding Word 6.0 commands.

WW2_Files$() returns the filename only, while the Word 6.0 Files$() function returns the path and
filename.

WW2_Insert has the same effect as the Word 6.0 Insert statement except when text is selected. If
the current selection includes a section break at the end of the selection, WW2_Insert overwrites it; the
Word 6.0 Insert statement does not. If a word is selected, including the space character following it,
WW2_Insert replaces the trailing space character; the Word 6.0 Insert statement does not.

Word 6.0 provides compatibility in find and replace macro operations by including the Word 2.x
versions of these statements as WW2_EditFind and WW2_EditReplace. Note that the Word 2.x special
character codes continue to work in WW2_EditFind and WW2_EditReplace. However, specifying ANSI
character 34 (straight quotation mark) as the find text in WW2_EditFind, WW2_EditReplace, EditFind, or
EditReplace in Word 6.0 finds both straight and "smart" quotation marks (ANSI 147 and 148); in Word 2.x
macros, ANSI 34 finds only straight quotation marks.

For more information on changes to finding and replacing, see Finding and replacing text.
The Word 2.x statement ViewHeaderFooter is supported in Word 6.0 as the

NormalViewHeaderArea statement; however, you cannot display the Word 2.x dialog box with
NormalViewHeaderArea.

The Word 2.x statement IconBarMode is supported in Word 6.0, but has no effect.
Some WW2_ statements correspond to dialog boxes in Word 2.x. A subset of these statements cannot be
used to display the Word 2.x dialog boxes in Word 6.0 (though the statements may still be used to set
options or return information through dialog records). Converted Word 2.x macros that attempt to display
a dialog box associated with any of the following statements will need to be updated by hand.
NormalViewHeaderArea
WW2_EditFindChar

WW2_EditReplaceChar
WW2_FormatDefineStyleChar
WW2_PrintMerge
WW2_PrintMergeCheck
WW2_PrintMergeHelper
WW2_PrintMergeSelection
WW2_PrintMergeToDoc
WW2_PrintMergeToPrinter
WW2_ToolsOptionsGeneral
WW2_ToolsOptionsKeyboard
WW2_ToolsOptionsMenus
WW2_ToolsOptionsToolbar
WW2_ToolsOptionsView
WW2_ViewZoom

Working with paragraph marks
In Word 2.x, the two ANSI characters 13 and 10 specified a paragraph mark. In Word 6.0, the single ANSI
character 13 represents a paragraph mark. Any Word 2.x macro that assumes the following:
para$ = Chr$(13) + Chr$(10)

will not work properly in a Word 6.0 document. Word 2.x macros often use this assumption to search for
paragraph marks or to test a selection to see if it contains a paragraph mark. Changing this assumption in
any converted Word 2.x macro will remedy this incompatibility with Word 6.0 documents.
However, paragraph marks in Word 2.x and text-only documents opened in Word 6.0 are still equivalent
to ANSI characters 13 and 10; only when a Word 2.x or text-only document is finally saved in Word 6.0
format are the paragraph marks converted to ANSI character 13. If your macro needs to work on
documents in both formats, make sure to check the current format before setting the assumption for which
ANSI character or characters comprise a paragraph mark.

Modifying startup options
Startup options for Word 6.0 are now in WINWORD6.INI. Macros that specify a Word section
("Microsoft Word 2.0," "Microsoft Word," "MSWord Text Converters," or "MSWord Editable Sections")
in a GetProfileString$() or SetProfileString instruction will return or set information in WINWORD6.INI
instead of WIN.INI. If you need to return or set options in Word 2.x sections of WIN.INI, use
GetPrivateProfileString$() and SetPrivateProfileString, which allow you to explicitly specify an INI file.

Error checking
Because error messages in Word 6.0 are more specific than those in Word 2.x, you may need to update
error-handling routines to trap new errors. For example, if the insertion point or selection is not in a table,
the StartOfRow and EndOfRow statements will generate an error message. Also, keep the following points
in mind:

Routines that manipulate dialog boxes without using GetCurValues may generate errors in Word 6.
0 that did not occur in Word 2.x.

Word 6.0 now displays an error if an array variable specified in a dialog box definition has not
been defined.

Limits in Word
You may want to fix assumptions your macros make about Word limits that have changed (for example,
the maximum number of open document windows has changed from nine to whatever number available
memory allows). A change to consider when converting Word 2.x macros is that the number of nesting
levels for Call instructions to other macros and subroutines has been reduced. But as in Word 2.x,
available memory often limits the number of nesting levels before a macro can reach the internal
maximum, around 9 in Word 6.0.
For more information on new limits and other changes in Word 6.0, see What's New in WordBasic and
Chapter 6, "Switching from a Previous Version of Word," in Microsoft Word Quick Results.

Creating and displaying dialog boxes
In Word 2.x, option buttons and check boxes are vertically centered within the rectangle defined by the
width and height arguments in OptionButton and CheckBox instructions. In Word 6.0, option buttons and
check boxes are aligned at the top of the rectangle. If the rectangle was larger than necessary in the Word
2.x macro, the option button or check box may be out of place when the dialog box definition is converted.
If necessary, paste the dialog box definition into the Dialog Editor and resize the controls.
In Word 6.0, list boxes no longer recognize empty strings. If a macro includes an empty string in an array
to be assigned to a list box, the list of entries is truncated after the empty string. For example, if you create
the following array:
ListBox1$(0) = "hello"
ListBox1$(1) = ""
ListBox1$(2) = "hello"

and then assign it to a list box in a dialog box definition, no text will appear in the list box after "hello"
when the dialog box is displayed. To fix the dialog box, either eliminate the empty string from the array or
add a space to each empty string. For example:
ListBox1$(1) = " "

In Word 6.0, a custom dialog box with no Cancel button cannot be closed using the dialog Control menu.
Two approaches can be taken to address this: Use the MsgBox command instead of a custom dialog box
(note that a message box can only display 256 characters), or include a Cancel button to the dialog box
definition and then create a dialog box function that hides the Cancel button on initialization.
In Word 2.x, input boxes displayed with InputBox$() set the focus on the OK button; to choose OK using
the keyboard, the user pressed ENTER, and to insert a new line break in the text box, the user pressed
SHIFT+ENTER. In Word 6.0, input boxes displayed with InputBox$() set the focus on the text box. When
the user presses ENTER, Word inserts a new line in the text box; to choose OK using the keyboard, the user
must press TAB to set the focus on the OK button and then press ENTER.
If you want to maintain the Word 2.x InputBox$() behavior in your macro, you need to create a custom
dialog box to display with a Dialog or Dialog() instruction instead of using InputBox$(). If you do use the
Word 6.0 InputBox$() function, you can make your macro more robust by evaluating the returned string to
ensure that it is usable in your macro, cleaning it up if the user inadvertently pressed ENTER while trying to
choose OK.

Cutting and pasting text
The Edit panel in the Options dialog box (Tools menu) contains a new editing option, Use Smart Cut And
Paste, that removes unneeded spaces when you delete text and adds spaces when you insert text. In macros
that delete, cut, or paste text, use ToolsOptionsEdit to control this option, making sure the setting of the
option corresponds to your macro's assumptions. For Word 2.x macros, the assumption will most likely be
that this feature is not available, so add the following instructions to your macro to make sure it behaves
the same in Word 6.0:
Sub MAIN
Dim dlg As ToolsOptionsEdit
GetCurValues dlg
reset = dlg.SmartCutPaste
dlg.SmartCutPaste = 0
ToolsOptionsEdit dlg
' Word 2.x macro instructions
ToolsOptionsEdit .SmartCutPaste = reset
End Sub

Using SendKeys
The macro converter does not change the keystrokes specified in SendKeys statements to accommodate
changes to access keys for menus, menu items, and dialog box controls in Word 6.0. For example, in Word
2.x, the instruction
SendKeys "%ob"

displays the Bullets And Numbering dialog box (Tools menu). In Word 6.0, the same instruction displays
the Borders And Shading dialog box (Format menu). Search your converted Word 2.x macros for all
SendKeys instructions to verify that they will still function as expected in Word 6.0.

Finding and replacing text
The EditFind and EditReplace statements have been updated for Word 6.0. The new versions use different
values for .Direction and use the new .Wrap argument to control prompts (for details, see EditFind). Also,
a few of the character codes used when searching for and replacing special characters have changed (for
example, "^m" instead of "^d" for a manual page break).
For these reasons, Word 6.0 provides compatibility in find and replace macro operations by including the
Word 2.x versions of these statements as WW2_EditFind and WW2_EditReplace. Note that the Word 2.x
special character codes continue to work in WW2_EditFind and WW2_EditReplace.
In a Word 2.x EditFind instruction, you set .Direction to 2 to search toward the end of the document and
prevent Word from displaying a prompt if the end of the document is reached. If there is a selection when
the search begins, Word 2.x searches the selection first, and then continues the search after the selection. A
WW2_EditFind instruction in Word 6.0 does not continue the search after the selection. Unless your
macro makes sure that there is no selection before the WW2_EditFind instruction is run, you may want to
rewrite the instruction using the Word 6.0 version of EditFind, setting .Direction to 0 (zero) and the new .
Wrap argument to 1.
The font name and ANSI code of symbols inserted using the Word 6.0 InsertSymbol command are hidden;
Word recognizes these symbols as ANSI character 40 (left parenthesis). Be aware that converted Word 2.
x macros that search for left parentheses will also find symbols inserted with InsertSymbol in Word 6.0
documents.

Searching for fields
In Word 2.x, fields are inserted with no space between the opening field character and the field name. In
Word 6.0, a space is inserted after the opening field character and before the closing field character. If you
have macros that search for specific fields and perform some action on them, you'll need to take this into
account. Consider the following macro converted from Word 2.x. Notice that in the find text, there is no
space between ^19 and DATE.
REM UnlinkDateFields -- unlinks each DATE field in the document
Sub MAIN
StartOfDocument
EditFindClearFormatting
WW2_EditFind .Find = "^19DATE", .Direction = 2, .Format = 0, .MatchCase = 0
While EditFindFound()

UnlinkFields
WW2_EditFind .Find = "^19DATE", .Direction = 2, .Format = 0, .MatchCase = 0

Wend
End Sub

You should assume that documents contain fields with varying numbers of spaces after the opening field
character, especially if the document began as a Word 2.x document. To account for this, the macro above
could be rewritten to include two loops: one for DATE fields with no space after the opening field
character and one for DATE fields with one or more spaces (^w) after the opening field character. Note
that he following macro uses the Word 6.0 versions of EditFind and EditReplace, in which you can specify
^d for a field character.
REM UnlinkDateFields -- unlinks each DATE field in the document
Sub MAIN
EditFindClearFormatting
ViewFieldCodes 1
EditFind .Find = "^dDATE", .Direction = 0, .Wrap = 1, .Format = 0, \

.MatchCase = 0
While EditFindFound()

UnlinkFields
EditFind .Find = "^dDATE", .Direction = 0, .Wrap = 1

Wend
EditFind .Find = "^d^wDATE", .Direction = 0, .Wrap = 1
While EditFindFound()

UnlinkFields
EditFind .Find = "^d^wDATE", .Direction = 0, .Wrap = 1

Wend
End Sub

You should also be aware that there are four fields whose names have changed in Word 6.0. However,
when you open a Word 2.x document containing one or more of these fields in Word 6.0, Word does not
update the field names. The fields continue to work as before, but their names don't change to the Word 6.
0 names unless you edit the field codes. The following table lists these four fields.
Word 2.x Word 6.0

INCLUDE INCLUDETEXT
IMPORT INCLUDEPICTURE
FTNREF NOTEREF
GLOSSARY AUTOTEXT
If you have a macro that searches for one of these fields, you may want to add code that accounts for the possibility that both field
names appear in the same document.

Working with headers and footers
In Word 6.0, the most common way to work with headers and footers is to display them with the
ViewHeader statement in page layout view. One limitation of this method is that Word can only display
the headers and footers of pages that exist in the document (that is, pages that can be displayed in page
layout view).
To work with headers and footers for documents with little or no text (for example, a template on which
much longer book-like documents will be based), you should use the NormalViewHeaderArea statement
to display any header or footer in the header/footer pane in normal view. The NormalViewHeaderArea
statement corresponds to the Word 2.x ViewHeaderFooter statement. The arguments are the same, and you
can use a dialog record and GetCurValues to return the current values of NormalViewHeaderArea;
however, in Word 6.0, you cannot display the Word 2.x ViewHeaderFooter dialog box.
The following to Word 6.0 macro instructions are equivalent:
FilePageSetup .DifferentFirstPage = 1, .OddAndEvenPages = 1
NormalViewHeaderArea .FirstPage = 1, .OddAndEvenPages = 1

But in a document with no text or page breaks, the following instruction displays the odd header in the
header/footer pane in normal view:
NormalViewHeaderArea .Type = 4

while the following instruction can only display the first-page header in page layout view:
ViewHeader

When enough text is added to create two page breaks (or if page breaks are added using InsertBreak), a
ViewHeader instruction would be able to display the odd header in page layout view.
Macros converted from Word 2.x will automatically use the NormalViewHeaderArea statement, just as
they used ViewHeaderFooter before. To duplicate Word 2.x functionality in new Word 6.0 macros, you
should use NormalViewHeaderArea as well. If you want your Word 6.0 macro to use ViewHeader in page
layout view, regardless of the number of pages in the active document or template, write code to insert one
or two temporary page breaks, modify the headers and footers, and then remove the temporary page
breaks.

New formatting implementations
Word 6.0 has many new formatting features and has revised some Word 2.x formatting statements and
functions for greater usability. When converting Word 2.x macros, you may need to rewrite some code
that applies formatting if you want to duplicate Word 2.x formatting behavior. Here are some specific
situations you might look out for.

Word 6.0 now has Superscript, Subscript, and Small Caps formats based on the typographical
information stored in the specified font. Word 2.x macros that created superscript and subscript text by
raising text and reducing its font size manually are converted to do the same in Word 6.0. However,
instructions that use this technique can be modified manually to take advantage of the new font formatting
capabilities of Word.

The .LineSpacing argument of the Word 2.x FormatParagraph statement has been split into two
arguments in the Word 6.0 FormatParagraph statement: .LineSpacingRule and .LineSpacing. To specify
exact line spacing in Word 2.x, you would specify a negative value for the .LineSpacing argument (for
example, "-10 pt"). To apply the same formatting in Word 6.0, you can do one of two things: specify
Exactly (value 4) for .LineSpacingRule and a positive value for .LineSpacing (for example, "10 pt"); or
specify a negative value for the .LineSpacing argument (for example, "-10 pt"). In this way, Word 2.x
instructions that apply this formatting are converted without error.

However, after Word 6.0 runs an instruction that assigns .LineSpacing a negative value, the value of .
LineSpacingRule is set to 4 ("Exactly") and the value of .LineSpacing is changed to a positive value.
Therefore, if your macro contains any conditional statements (such as If...Then...Else or While...Wend)
that test for a negative .LineSpacing value in a Word 6.0 FormatParagraph dialog record, they will
always return false. Each conditional statement that tests for a negative .LineSpacing value should be
modified to test for either a positive .LineSpacing value, a .LineSpacingRule value of 4, or both,
depending on the information required.

Word 6.0 provides two kinds of style: paragraph and character. The name of the current style,
returned by the StyleName$() function, depends on where the insertion point or selection is located. For
example, if a word is selected in a Normal paragraph and no character styles are applied to the word,
StyleName$() returns "Normal." However, if the word has a character style, such as ArialBold, applied to it,
StyleName$() returns "ArialBold." To make sure StyleName$() returns the underlying paragraph style,
regardless of the any character styles applied to the current selection, use the following code:

EditBookmark "tmp"
SelType 1
reset$ = StyleName$()
Style "Default Paragraph Font"
parastyle$ = StyleName$()
Style reset$
EditGoto "tmp"
EditBookmark "tmp", .Delete

In Word 6.0, the Organizer command can be used in macros to copy multiple styles, AutoText
entries, toolbars, and macros; a macro simply establishes a loop based on the number of items counted by a
function such as CountStyles() and runs an Organizer instruction for each item.

As in Word 2.x, macros in Word 6.0 can use the FormatStyle statement to merge all styles to or from
documents or templates using the .FileName, .Source, and .Merge arguments. Word 2.x macros that use
this method are converted with little or no modification into Word 6.0.

Replacing Windows API calls with new statements and functions
Some new WordBasic statements and functions provide the functionality of common Windows API calls
used in Word 2.x with Declare statements. When converting a macro from Word 2.x to Word 6.0, you
might consider which Windows API calls the macro made before could be converted to new built-in
WordBasic functionality.
For example, the application control statements such as AppSize, AppMove, and AppMinimize can be
used in Word 6.0 to control the state of any Windows-based application, not just Word. If your macro
attempts to modify the state of non-Word applications using Windows API calls, you might consider
replacing the API calls with the corresponding WordBasic statements. Also, new statements such as
AppGetNames, AppCount(), and AppIsRunning() extend the ability of macros to modify or return
information about the entire Windows environment.
AppSendMessage is a powerful statement added to Word 6.0 that allows macros to send any Windows
API message and its associated parameters (described in the Microsoft Windows 3.1 Software
Development Kit) to any running Windows-based application. If you are converting a Word 2.x macro that
attempted to do the same thing using Windows API function calls, you can modify the macro to take
advantage of AppSendMessage.
Word 6.0 has added two statements, ScreenUpdating and ScreenRefresh, to provide some display control
that could only be found in calls to the Windows API EchoOff function. Note that ScreenUpdating does
not provide the same functionality as EchoOff; toolbars can be hidden and displayed, the status bar can be
updated, message boxes can prompt for information, and so on. If you have a Word 2.x macro that used
the Windows API EchoOff function, you might consider using the Word 6.0 screen updating statements
instead if they satisfy the needs of the macro.
In Word 6.0, you can use GetPrivateProfileString$() and SetPrivateProfileString to return and modify
settings in any initialization file: WIN.INI, WINWORD6.INI, an initialization file for any other Windows-
based application, or even your own initialization file such as MACROVAR.INI. If you are converting a
Word 2.x macro that uses Windows API calls to functions of the same name, you might consider whether
the built-in statement and function can be used to accomplish the same task.

Issues of context when calling macros and subroutines
In both Word 2.x and Word 6.0, you can call one macro from another by using a ToolsMacro instruction
or by using the following syntax:
[Call] MacroName[.SubName] [ArgumentList]
Occasionally, more than one macro with the specified name are available to run. In such cases, Word 6.0
uses different rules than Word 2.x when deciding which macro to run. In general, Word 2.x resolves name
conflicts in favor of the active template and Word 6.0 resolves name conflicts in favor of the template that
contains the calling macro. An example will illustrate this point.
Consider the template MY.DOT containing the macro Welcome.
'Welcome macro (MY.DOT)
Sub Main
MsgBox "I am the Welcome macro in MY.DOT"
End Sub

Consider a macro of the same name in NORMAL.DOT.
'Welcome macro (NORMAL.DOT)
Sub Main
MsgBox "I am the Welcome macro in NORMAL.DOT"
End Sub

Now consider another macro in the Normal template which creates a document based on MY.DOT, and
then runs Welcome.
'Macro in NORMAL.DOT that runs NORMAL.DOT version of Welcome
Sub Main
FileNew .Template = "MY.DOT"
Welcome
End Sub

When the Welcome macro runs, MY.DOT is active. In Word 2.x, the MY.DOT version of Welcome runs
because naming conflicts are resolved in favor of the active template. In Word 6.0, where the version in
the template containing the calling macro takes precedence over the version in the active template, the
NORMAL.DOT version of Welcome runs.
How can you override this behavior in Word 6.0 macros without renaming all of your macros and
subroutines to use unique names? There are two ways: use ToolsMacro instead of Call, or include the
WW2CallingConvention statement.
If you want to run the main subroutine of a macro in the active template regardless of which template
contains the calling macro (and you don't need to pass any values), use a ToolsMacro instruction and set .
Show to 3 (the value for active template context).
'Macro in NORMAL.DOT that runs MY.DOT version of Welcome
Sub Main
FileNew .Template = "MY.DOT"
ToolsMacro .Name = "Welcome", .Show = 3, .Run
End Sub

Note that whenever you call a macro with ToolsMacro, it's a good idea to specify .Show. Otherwise, the
context will be determined by whatever context was last selected in the Macro dialog box. This is different
from the Word 2.x version of ToolsMacro, where, if you omitted .Show, Word looked for the macro first
in the active template, then in the Normal template, and finally in built-in commands.
Use WW2CallingConvention if you want Word 6.0a to resolve naming conflicts the same way Word 2.x
resolved them. With WW2CallingConvention, your macros can use Call to call macros or subroutines
within macros in an active template if a macro by the same name already exists in the calling template.
You must include WW2CallingConvention if you want to pass values to a macro with a conflicting name
that you might otherwise call with a ToolsMacro statement that has .Show set to 3, as described above.
Note
The WW2CallingConvention statement is an addition to Word 6.0a. Note that anyone using a macro that
contains WW2CallingConvention must also have Word 6.0a for the macro to perform as intended.
Including a CommandValid() check in your macros that include WW2CallingConvention will prevent a
user from trying to run the new statement when it is not available in their version of Word. For more
information, see WW2CallingConvention.

Taking advantage of global templates
If you are converting a complex suite of macros in multiple templates from Word 2.x to Word 6.0, you
should consider taking advantage of global templates in Word 6.0 for the following reasons:

In Word 2.x, it was common practice to distribute macros in a template that ran a process using
MacroCopy to copy some or all of the macros to a user's Normal template so those macros would be
available at all times. In Word 6.0, you need only distribute a template containing all of your macros and
instruct the user to load the template as a global template, using the Templates And Add-ins dialog box (File
menu). With global templates, you don't have to touch your user's Normal template.

If you distributed multiple Word 2.x templates, each with its own set of macros, you can
reorganize those templates to take advantage of global templates. The macros for manipulating a new
document based on any given template do not need to be stored in the specific template; rather, they can all
reside in one authoritative global template. You can also avoid cross-template naming conflicts by storing
macros in one global template.

The change from juggling templates in Word 2.x to loading a single global template in Word 6.0 to
automatically customize a user's Word environment requires some recoding and reorganizing of existing
Word 2.x template suites. However, the global-template model for customizing Word will pay off by giving
converted Word 2.x templates long-term stability in Word 6.0 and later versions.

Miscellaneous "gotchas"
Look for the following assumptions in your Word 2.x macros when you convert them to Word 6.0. A
change in Word 6.0 behavior may cause your macro to behave unexpectedly or incorrectly if it operates
under one of these conditions.

The predefined bookmarks "\Para" and "\Page" no longer select the last paragraph mark in a
document if that paragraph mark is adjacent to the rest of the bookmark. For example, in Word 2.x, an
EditGoto instruction that specified "\Page" would select the last paragraph mark in the document if the
insertion point or selection was in the last page; in Word 6.0, the paragraph mark is excluded. You need to
modify a converted Word 2.x macro if it continues after such an instruction with the assumption that the
paragraph mark is part of the selection.

In Word 2.x, if your macro used FileSaveAs to save the active document in a file format other than
Word Document, Word saved the new version of the file but left the original active document active. In
Word 6.0, Word saves the new version of the file, closes the original active document (if it had already been
saved), and makes the new version of the file in the foreign format the active document.

If your converted Word 2.x macro assumes that any editing done after saving a file in a foreign format
is being done on the original Word Document file, it will behave incorrectly; it will actually modify the
content of the foreign-format file, which is active. Modify your Word 2.x macro in Word 6.0 to close
the foreign-format file and re-open the original Word Document file if it needs to continue modifying
the Word Document version of the file.

A macro that includes an OnTime instruction will run the specified macro regardless of whether
Word is the active application when the specified time occurs. Word 2.x, if the specified time passed while
Word was inactive, Word ran the macro as soon as it became the active application. Any Word 2.x macro
that assumed Word would be the active application when the specified macro ran as a result of OnTime
should be modified to work with the new assumption or use another kind of delay routine.

Naming variables, subroutines and user-defined functions
You may need to change names of variables, subroutines, and user-defined functions if the names have
become reserved words in Word 6.0 (such as statement or function names).
You cannot call a subroutine or user-defined function stored in another macro if the name of the
subroutine or function is the same as the name of an argument for a WordBasic statement that corresponds
to a dialog box. For example, if you have a macro called "Library" that contains a subroutine called
"Wrap," you cannot call the subroutine from another macro in the same template. The instruction
Library.Wrap

in another macro generates an error because .Wrap is a an argument of the EditFind statement.
If you locate a Word 2.x macro that contains a subroutine or user-defined function with a name that has
become a reserved word, you should change the name of the subroutine or function to avoid the error
described above.

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ClearFormField Example
This example is intended to run when the focus moves to a text form field. If the user moves to the form
field using the TAB key, thereby selecting its contents, the condition GetSelStartPos() <> GetSelEndPos
() is true and Word clears the form field. If the user clicks the form field with the mouse, the condition is
false and Word takes no action.
If GetSelEndPos() <> GetSelStartPos() Then ClearFormField

ClearFormField
Example

ClearFormField
Clears the text in a text form field selected in a protected form document. ClearFormField behaves like the
BACKSPACE key. Note that in an unprotected form document, ClearFormField deletes the selected text
form field (unless the form field was selected while the document was protected, in which case the form
field's text is cleared, and the form field is not deleted). An error occurs if a text form field is not selected;
the statement cannot be used to clear a drop-down or check box form field.

See also
Forms Statements and Functions
SetFormResult
TextFormField

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ConvertObject Example
This example changes the display of the selected embedded object to an icon stored in PROGMAN.EXE.
ConvertObject .IconNumber = 28, .IconFilename = "PROGMAN.EXE", \

.Caption = "Caption Text", .DisplayIcon = 1

ConvertObject
Example

ConvertObject [.IconNumber = number] [, .ActivateAs = number] [, .IconFilename = text] [, .
Caption = text] [, .Class = text] [, .DisplayIcon = number]
Converts the selected embedded object from one class to another, allows a different server application to
edit the object, or changes how the object is displayed in the document. The arguments for the
ConvertObject statement correspond to the options in the Convert dialog box (Object submenu, Edit
menu).
Argument Explanation

.IconNumber If .DisplayIcon is set to 1, a
number corresponding to the icon
you want to use in the program file
specified by .IconFilename. Icons
appear in the Change Icon dialog
box (Object command, Insert
menu): 0 (zero) corresponds to the
first icon, 1 to the second icon, and
so on. If omitted, the first (default)
icon is used.

.ActivateAs Specifies whether Word converts
or sets the server application for
the selected object:
0 (zero) Converts the selected object to

the object type specified by .Class.
1 Uses the server application specified

by .Class to edit the object. Note that
this setting applies to all objects of
the selected type and that Word uses
the specified server application when
inserting objects of the selected type.

.IconFilename If .DisplayIcon is set to 1, the path
and filename of the program file in
which the icon to be displayed is
stored.

.Caption If .DisplayIcon is set to 1, the
caption of the icon to be displayed;
if omitted, Word inserts the name
of the object.

.Class A class name specifying the object
type to convert to or the server
application for editing the object,
depending on the setting for .
ActivateAs. The class name for a
Word document is Word.
Document.6 and a Word picture is
Word.Picture.6.
To look up other class names,
insert an object of the type to
convert to in a document and view
the field codes; the class name of
the object follows the word
"EMBED."

.DisplayIcon Specifies whether or not to display
the object as an icon:
0 (zero) or omitted Object is not

displayed as an icon.
1 Object is displayed as an icon.

See also
Object Linking and Embedding Statements and Functions
InsertObject

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

CountDocumentVars() Example
This example resets each document variable in the active document to an empty string (""). If the
document contains no variables, a message box is displayed.
numVars = CountDocumentVars()
If numVars > 0 Then

For i = 1 To CountDocumentVars()
name$ = GetDocumentVarName$(i)
SetDocumentVar name$, ""

Next
Else

MsgBox "No document variables to reset."
End If

CountDocumentVars()
Example

CountDocumentVars()
Returns the number of document variables set with SetDocumentVar or SetDocumentVar() in the active
document.

See also
Documents, Templates, and AddIns Statements and Functions
GetDocumentVar$()
GetDocumentVarName$()
SetDocumentVar

DrawResetWordPictureDrawResetWordPicture
Resets the boundaries in a Word Picture object to include all drawing objects in the picture editing
window. If the active window is not a picture editing window, an error occurs.

See also
Drawing Statements and Functions
DrawInsertWordPicture
FileClosePicture

FieldSeparator$, FieldSeparator$()
FieldSeparator$ Separator$
FieldSeparator$()
The FieldSeparator$ statement sets the separator character, Separator$, Word recognizes when dividing
text among cells in a TextToTable operation. For example, if you have data in which the items of
information are delimited by percent signs (%), you can use the instruction FieldSeparator$ "%" before
converting the data to a table. The FieldSeparator$() function returns the current separator character.

See also
Tables Statements and Functions
TextToTable

FileClosePictureFileClosePicture
Closes the picture editing window and embeds a Word Picture object in the document.

See also
Drawing Statements and Functions
DrawResetWordPicture

FormatBullet
FormatBullet [.Points = number] [, .Color = number] [, .Alignment = number] [, .Indent = number or
text] [, .Space = number or text] [, .Hang = number] [, .CharNum = number] [, .Font = text]
Adds bullets to the selected paragraphs. The arguments for the FormatBullet statement correspond to the
options in the Modify Bulleted List dialog box (Bulleted tab, Bullets And Numbering command, Format
menu). You cannot display this dialog box using a Dialog or Dialog() instruction.
Argument Explanation

.Points The size of the bullets, in points.

.Color The color of the bullets (for a list
of colors, see CharColor).

.Alignment Specifies an alignment for the
bullets within the space between
the left indent and the first line of
text; takes effect only if .Space is 0
(zero):
0 (zero) or omitted Left
1 Centered
2 Right

.Indent The distance between the left
indent and the first line of text, in
points or a text measurement.

.Space The distance between the bullet
and the first line of text, in points
or a text measurement.

.Hang If 1, applies a hanging indent to
the selected paragraphs.

.CharNum The sum of 31 and the number
corresponding to the position of
the symbol in the Symbol dialog
box (Insert menu), counting from
left to right. For example, to
specify an omega (), which is at
position 56 on the table of symbols
in the Symbol font, set .CharNum
to 87.

.Font The name of the font containing
the symbol. Names of decorative
fonts appear in the Font box in the
Symbol dialog box.

See also
Bullets and Numbering Statements and Functions
CharColor
FormatBulletsAndNumbering
FormatHeadingNumber
FormatMultilevel
FormatNumber

FormatHeadingNumber
FormatHeadingNumber [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number]
[, .After = text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent =
number or text] [, .Space = number or text] [, .Hang = number] [, .RestartNum = number] [, .Level =
number] [, .Font = text] [, .Strikethrough = number] [, .Bold = number] [, .Italic = number] [, .
Underline = number]
Applies numbers to all paragraphs in the document formatted with one of the nine built-in heading level
styles, or changes numbering options for a specified heading level. The arguments for the
FormatHeadingNumber statement correspond to the options in the Modify Heading Numbering dialog box
(Heading Numbering command, Format menu).
Argument Explanation

.Points, .Color, .Font, .
Strikethrough, .Bold, .
Italic, .Underline

Apply character formatting to
numbers at the specified level. For
argument descriptions, see
FormatFont.

.Before, .After, .
Alignment, .Indent, .
Space, .Hang

Set options for numbers at the
specified level. For argument
descriptions, see FormatNumber.

.Type Specifies a format for numbering
headings at the specified level:
0 (zero) 1, 2, 3, 4
1 I, II, III, IV
2 i, ii, iii, iv
3 A, B, C, D
4 a, b, c, d
5 1st, 2nd, ...
6 One, Two, ...
7 First, Second, ...

.StartAt The number for the first heading in
each sequence of headings of the
specified level. If .Type is 3 or 4, .
StartAt corresponds to the position
in the alphabet of the starting
letter.

.Include Specifies whether to include
numbers and position options from
the previous headings for numbers
at the specified level:
0 (zero) Includes neither numbers nor

position options.
1 Includes a series of numbers from

higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher-
level headings and position options
from the previous level.

.RestartNum If 1, restarts heading numbering at
each new section.

.Level A number from 1 through 9
corresponding to the heading level
whose numbering options you
want to change.

See also
Bullets and Numbering Statements and Functions
FormatBullet
FormatHeadingNumbering
FormatMultilevel
FormatNumber

FormatMultilevel
FormatMultilevel [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number] [, .
After = text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent = number
or text] [, .Space = number or text] [, .Hang = number] [, .Level = number] [, .Font = text] [, .
Strikethrough = number] [, .Bold = number] [, .Italic = number] [, .Underline = number]
Applies multilevel list numbers to the selected paragraphs or changes numbering options for a specified
level. The arguments for the FormatMultilevel statement correspond to the options in the Modify
Multilevel List dialog box (Multilevel tab, Bullets And Numbering command, Format menu). You cannot
display this dialog box using a Dialog or Dialog() instruction.
Argument Explanation

.Level A number from 1 through 9
corresponding to the heading level
whose numbering options you
want to change.
Note that if you specify .Level, the
options you set in the
FormatMultilevel instruction are
not applied. To apply the settings,
include a second FormatMultilevel
instruction in which .Level is not
specified.

.Points, .Color, .Font, .
Strikethrough, .Bold, .
Italic, .Underline

Apply character formatting to
numbers at the specified level. For
individual argument descriptions,
see FormatFont.

.Before, .After, .
Alignment, .Indent, .
Space, .Hang

Set options for numbers at the
specified level. For argument
descriptions, see FormatNumber.

.Type Specifies a format for numbering
headings at the specified level:
0 (zero) 1, 2, 3, 4
1 I, II, III, IV
2 i, ii, iii, iv
3 A, B, C, D
4 a, b, c, d
5 1st, 2nd, ...
6 One, Two, ...
7 First, Second, ...

.StartAt The number for the first heading in
each sequence of headings of the
specified level. If .Type is 3 or 4, .
StartAt corresponds to the position
in the alphabet of the starting
letter.

.Include Specifies whether to include
numbers and position options from
the previous headings for numbers
at the specified level:
0 (zero) Includes neither numbers nor

position options.
1 Includes a series of numbers from

higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher
level-headings and position options
from the previous level.

See also
Bullets and Numbering Statements and Functions
FormatBullet
FormatBulletsAndNumbering

FormatHeadingNumber
FormatNumber

FormatNumber
FormatNumber [.Points = number] [, .Color = number] [, .Before = text] [, .Type = number] [, .After
= text] [, .StartAt = number] [, .Include = number] [, .Alignment = number] [, .Indent = number or
text] [, .Space = number or text] [, .Hang = number] [, .Font = text] [, .Strikethrough = number] [, .
Bold = number] [, .Italic = number] [, .Underline = number]
Numbers the selected paragraphs. The arguments for the FormatNumber statement correspond to the
options in the Modify Numbered List dialog box (Numbered tab, Bullets And Numbering command,
Format menu). You cannot display this dialog box using a Dialog or Dialog() instruction.
Argument Explanation

.Points, .Color, .
Font, .
Strikethrough, .
Bold, .Italic, .
Underline

Apply character formatting to
numbers at the specified level. For
argument descriptions, see
FormatFont.

.Before The text, if any, you want to
appear before each number.

.Type Specifies a format for numbering
lists:
0 (zero) 1, 2, 3, 4
1 I, II, III, IV
2 i, ii, iii, iv
3 A, B, C, D
4 a, b, c, d

.After The text, if any, you want to
appear after each number.

.StartAt The number for the first selected
paragraph. If .Type is 3 or 4, .
StartAt corresponds to the position
in the alphabet of the starting
letter.

.Include Specifies whether to include
numbers and position options from
the previous headings for numbers
at the specified level:
0 (zero) Includes neither numbers nor

position options.
1 Includes a series of numbers from

higher-level headings before the
numbers at the specified level.

2 Includes both numbers from higher-
level headings and position options
from the previous level.

.Alignment Specifies an alignment for the
numbers within the space between
the left indent and the first line of
text; takes effect only if .Space is 0
(zero):
0 (zero) or omitted Left
1 Centered
2 Right

.Indent The distance between the left
indent and the first line of text, in
points or a text measurement.

.Space The distance between the number
and the first line of text, in points
or a text measurement.

.Hang If 1, applies a hanging indent to
the selected paragraphs.

.Font The font to apply to the numbers.

See also
Bullets and Numbering Statements and Functions

FormatBullet
FormatBulletsAndNumbering
FormatHeadingNumber
FormatMultilevel

FormShading, FormShading()
FormShading [On]
FormShading()
The FormShading statement controls shading for form fields in the active document.
Argument Explanation

On Specifies whether to display form
fields with or without shading.
1 Displays form fields with shading.
0 (zero) Displays form fields without

shading.
Omitted Toggles form-field shading.

The FormShading() function returns 0 (zero) if form fields are not shaded and -1 if they are.

See also
Forms Statements and Functions
FormFieldOptions

GetDocumentVarName$()
GetDocumentVarName$(VariableNumber)
Returns the name of a document variable set with SetDocumentVar or SetDocumentVar().
Argument Explanation

VariableNumber The number of the document
variable, from 1 to the total
number of document variables
stored in the active document (you
can obtain the total using
CountDocumentVars()).

For an example, see CountDocumentVars() Example.

See also
Documents, Templates, and AddIns Statements and Functions
CountDocumentVars()
GetDocumentVar$()
SetDocumentVar

InsertSectionBreakInsertSectionBreak
Inserts a section break with the same formatting as the section containing the insertion point.

See also
Section and Document Formatting Statements and Functions
InsertBreak
InsertColumnBreak
InsertPageBreak

LockDocument, LockDocument()
LockDocument [Lock]
LockDocument()
The LockDocument statement adds or removes read-only protection for an entire master document or one
of its subdocuments. If the insertion point is within a master document but not within a subdocument,
LockDocument locks or unlocks the entire document. If the insertion point is within a subdocument,
LockDocument locks or unlocks the subdocument only.
Argument Explanation

Lock Specifies whether to add or
remove read-only protection for
the subdocument or master
document:
0 (zero) Removes read-only protection.

Note that if you unlock an entire
master document, Word unlocks all
subdocuments that were previously
locked.

1 Adds read-only protection.
Omitted Toggles read-only protection.

The LockDocument() function returns -1 if the subdocument or master document is read-only and 0 (zero)
if it is not. Note that when the insertion point is in a subdocument, LockDocument() returns information
about the read-only state of the subdocument only, not of the entire master document.

See also
Environment Statements and Functions
ToolsProtectDocument
ToolsProtectSection
ToolsUnprotectDocument

Magnifier, Magnifier()
Magnifier [On]
Magnifier()
The Magnifier statement changes the mouse pointer from the standard pointer to a pointer resembling a
magnifying glass, or vice versa, in print preview. When the mouse pointer is a magnifying glass, the user
can zoom in on a particular area of the page or zoom out to see an entire page or pages.
Argument Explanation

On Specifies the mouse pointer to
display in print preview:
0 (zero) Displays the standard pointer.
1 Displays the magnifying glass

pointer.
Omitted Toggles the mouse pointer.

The Magnifier() function returns -1 if the mouse pointer is a magnifying glass and 0 (zero) if it is the
standard pointer.

See also
View Statements and Functions
FilePrintPreview
ViewZoom

MicrosoftSystemInfoMicrosoftSystemInfo
Runs Microsoft System Info, which displays information about the current operating environment.

See also
Environment Statements and Functions
AppInfo$()
GetSystemInfo

NormalViewHeaderArea
NormalViewHeaderArea [.Type = number] [, .FirstPage = number] [, .OddAndEvenPages = number]
[, .HeaderDistance = text] [, .FooterDistance = text]
Opens the header/footer pane (normal and outline views) or displays the header or footer area (page layout
view) and sets options for headers and footers. Word version 6.0 preserves the ability to display the
header/footer pane so you can edit any type of header or footer, regardless of the number of pages in a
document, and so the spelling checker can highlight misspelled words in a header or footer.
The arguments for the NormalViewHeaderArea statement correspond to the options in the Header/Footer
dialog box in Word version 2.x. Note that these options are usually set using FilePageSetup in Word
version 6.0. Although you can retrieve information from the NormalViewHeaderArea dialog record, you
cannot use this statement to display the Word version 2.x dialog box.
Argument Explanation

.Type Specifies whether to display the
header or footer area. The possible
values of .Type depend on the
settings of .FirstPage and .
OddAndEvenPages.
If both .FirstPage and .
OddAndEvenPages are set to 0
(zero):
0 (zero) Header
1 Footer
If .FirstPage is set to 1 and .
OddAndEvenPages is set to 0
(zero):
0 (zero) Header
1 Footer
2 First header
3 First footer
If .FirstPage is set to 0 (zero) and .
OddAndEvenPages is set to 1:
0 (zero) Even header
1 Even footer
2 Odd header
3 Odd footer
If both .FirstPage and .
OddAndEvenPages are set to 1:
0 (zero) First header
1 First footer
2 Even header
3 Even footer
4 Odd header
5 Odd footer

.FirstPage If 1, allows a header or footer for
the first page that differs from the
rest of the pages in the section.

.OddAndEvenPages If 1, allows one header or footer
for even-numbered pages and a
different header or footer for odd-
numbered pages.

.HeaderDistance The distance from the top of the
page to the header.

.FooterDistance The distance from the bottom of
the page to the footer.

See also
View Statements and Functions
FilePageSetup
ViewFooter
ViewHeader

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

PathFromMacPath$() Example
In Word for Windows, this example returns the path and filename "\ HD80\ Reports\ !FinalRe.por".
winpath$ = PathFromMacPath$("HD80:Reports:Final Report")

PathFromMacPath$()
Example

PathFromMacPath$(Path$)
Converts the Macintosh path and filename specified by Path$ to a valid path and filename for the current
operating system.
In Windows, each directory name and filename may contain up to eight characters followed by an optional
filename extension (a period and up to three characters). When converting a Macintosh path to a valid
Windows path, Word does the following to each Macintosh directory name and filename:

Removes spaces.
Adds an exclamation point (!) before the directory name or filename if spaces or extra characters

are removed.
If the directory name or filename is longer than eight characters, adds a period and removes extra

characters to form a valid Windows directory name or filename with an extension; for example, the
Macintosh directory name "Employee Addresses" becomes the Windows directory name "!Employe.ead".

Uses the first period, if any, to determine where the extension begins in the Windows directory
name or filename, removing any unusable characters; for example, the Macintosh filename "PC text file.
text" becomes the Windows filename "!PCtextf.tex".

If there is more than one period, removes all characters between the first and the last period; for
example, the Macintosh filename "chapter1.rev.3" becomes the Windows filename "!chapter.3".

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

SelectionFileName$() Example
This example checks to see if the active window is a macro-editing window. If not, the example checks the
last character in the text returned by SelectionFileName$(). If the last character is a backslash (\),
indicating the document has never been saved, a message is displayed.
a$ = SelectionFileName$()
If SelInfo(27) = -1 Then

MsgBox "A macro-editing window is active."
Goto bye

End If
If Right$(a$, 1) = "\" Then

MsgBox "The active document has never been saved."
End If
bye:

SelectionFileName$()
Example

SelectionFileName$()
Returns the full path and filename of the active document if it has been saved. If the document has not
been saved, or if the active window is a macro-editing window, SelectionFileName$() returns the current
path followed by a backslash (\).

See also
Documents, Templates, and AddIns Statements and Functions
FileName$()
FileNameInfo$()
GetDirectory$()

WW2CallingConvention, WW2CallingConvention()
WW2CallingConvention [On]
WW2CallingConvention()
The WW2CallingConvention statement (Word 6.0a only) controls how Word resolves naming conflicts
when one macro calls another. A conflict arises if a macro with the specified name exists both in the active
template and the template containing the calling macro. In Word 2.x, the macro in the active template runs.
In Word 6.0, the macro in the calling template runs.
By including a WW2CallingConvention instruction at the beginning of a macro, you can temporarily
revert to Word 2.x behavior. When the macro containing the WW2CallingConvention instruction ends,
Word 6.0 behavior is restored.
Argument Explanation

On Specifies how Word resolves
naming conflicts:
0 (zero) Word 6.0 behavior (in favor of

the calling template)
1 or omitted Word 2.x behavior (in favor

of the active template)

The WW2CallingConvention() function returns -1 if the Word 2.x calling convention is in effect and 0
(zero) if it isn't.
In general, you should use WW2CallingConvention only if you already have a suite of templates that rely
on Word 2.x behavior to resolve naming conflicts. This statement can be a handy way to get your solution
up and running in Word 6.0a without a major rewrite. However, be aware that whoever runs your solution
will also need Word 6.0a because WW2CallingConvention is not part of Word 6.0.

See also
Converting Word Version 2.x Macros
ToolsMacro

The Microsoft Word Developer's Kit

The Microsoft Word Developer's Kit, published by Microsoft Press, is a comprehensive guide and reference
to programming macros in WordBasic. The book is divided into three parts:

Part 1, "Learning WordBasic," gets you started programming in WordBasic or learning the details
of WordBasic if you already know another Basic programming language.

Part 2, "WordBasic Reference," is a printed version of the statements and functions reference in
WordBasic Help.

Part 3, "Appendixes," provides information about the tools and extensions to WordBasic included
on a companion disk.

The disk provided in the Microsoft Word Developer's Kit includes the following:
Workgroup extensions for WordBasic, which allow access to the messaging application

programming interface (MAPI). With Workgroup extensions, you can include electronic mail (e-mail) in
your custom applications.

Open database connectivity (ODBC) extensions for WordBasic, which allow access to data in any
database management system (DBMS) that supports the ODBC application programming interface (API)
standard.

Tools for creating add-ins that interact directly with Microsoft Word using the Microsoft Word
application programming interface (Word API).

Templates containing example macros and tools, including a wizard that helps you set up your own
custom wizards.

Microsoft Word Developer's Kit (Microsoft Press, 1993) ISBN 1-55615-630-8. Available wherever
computer books are sold and directly from Microsoft Press. Credit card orders: 1-800-MS-PRESS or 615-
793-5090. CompuServe: GO MSP.

Microsoft Word Developer's Kit (Microsoft Press, 1993) ISBN 1-55615-630-8. Available wherever
computer books are sold and directly from Microsoft Press. For more information, including a description
of the contents of the Developer's Kit and how to place orders, see The Microsoft Word Developer's Kit.

Microsoft Solution Providers
Microsoft Solution Providers are independent organizations that provide consulting, integration,
customization, development, technical support and training, or other services with Microsoft products.
These companies are called Solution Providers because they apply technology and provide high-quality
services to help solve real-world business problems.
If your organization develops custom solutions using Microsoft Word or Microsoft Office, or if you
design, integrate, train, support, or provide other services for Microsoft products, the Microsoft Solution
Provider program may be for you. Solution Providers receive business development assistance, access to
information and technology, and membership in a powerful community.

To find out more about Microsoft Solution Providers
In the U.S., call 1-800-426-9400.
In Canada, call (800) 563-9048.
Outside North America, contact your local Microsoft office.

Key Examples in WordBasic Help
How to get a list of the files in a directory
You use the Files$() function to return the list of files in a directory. The trick is first to use Files$() to
specify the list of files to return, and then to use Files$() within a loop to return the rest of the files in the
directory.
Examples

How to display a custom dialog box
You use either the Dialog statement or the Dialog() function to display a custom dialog box. Generally, the
Dialog() function is preferred, since it returns the value of the command button chosen. If you use the
Dialog statement instead, an error is generated if the user chooses the Cancel button in the dialog box (the
error can be trapped using an On Error instruction). Before a custom dialog box can be displayed, a Begin
Dialog...End Dialog statement must be used to create a dialog box definition and a Dim statement must be
used to create a dialog record.
Examples

How to display a Word dialog box
You use either the Dialog statement or the Dialog() function to display a Word dialog box. If you use the
Dialog statement, an error is generated if the user chooses the Cancel button in the dialog box (the error
can be trapped using an On Error instruction). Before a Word dialog box can be displayed, a Dim
statement must be used to create a dialog record and the GetCurValues statement must be used to place the
current values of the dialog box into the dialog record.
Examples

How to retrieve values from a Word dialog box
You can retrieve the value of one or more Word dialog box settings by using the Dim statement to define a
dialog record for that dialog box and using the GetCurValues statement to place the current values of the
dialog box into the dialog record. You can then use the syntax DialogRecord.ArgumentName to retrieve
dialog box values, where ArgumentName is the name of an argument for the WordBasic statement that
corresponds to the dialog box.
Example

How to get a list of AutoText entries, bookmarks, or available fonts
Many WordBasic functions beginning with "Count" return the numbers of different items stored in the
active document or template. For example, the CountAutoTextEntries() function returns the number of
AutoText entries in a template; the CountBookmarks() function returns the number of bookmarks in the
active document; and the CountFonts() function returns the number of fonts available on the active printer.
You can combine these functions with other functions, such as AutoTextName$(), BookmarkName$(),
and Font$() to return lists of AutoText entries, bookmarks, or fonts.
AutoText Entries Example
Bookmarks Examples
Fonts Example

How to work on part of a document
You can use bookmarks and the CmpBookmarks() function to restrict the operation of a macro to a
particular part of a document.
Example

How to switch between windows
It is often useful for a macro to switch between active windows. You can use the Activate or WindowList
statements to activate a document window or macro-editing window.
Example

How to create "permanent" variables

You can use the SetPrivateProfileString and SetDocumentVar statements to create variables that persist
after a macro has finished running. The SetDocumentVar statement creates a document variable in the
active document. The SetPrivateProfileString statement creates a variable setting in a settings file stored in
the Windows directory.
Document Variable Example
Settings File Example

How to insert text into a document
You use the Insert statement to insert text into a document. The Insert statement can insert into a document
anything a user can insert using the keyboard, including nonprinting characters such as tab characters.
Examples

How to retrieve text from a document
Generally, you use the Selection$() function to return text from a document to a macro. The Selection$()
function returns the text of the current selection. You can also use the GetBookmark$() function to return
bookmarked text in the active document.
Selection$() Example
GetBookmark$() Example

Operators and Predefined Bookmarks
Operators
Overview
Operator Precedence
Arithmetic Operators
The String Concatenation Operator
Comparison Operators
Logical Operators

Predefined Bookmarks
Predefined Bookmarks

Overview of Operators
An expression is any valid combination of operators, variables, numbers, strings, and WordBasic functions
that can be evaluated to a single result. Depending on the kind of operator and values used, the result of an
expression can be a number, string, or logical value, where the numbers -1 and 0 (zero) represent the
logical values true and false, respectively. In WordBasic, there are four categories of operators to use with
values to form expressions: arithmetic, string concatenation, comparison, and logical. This section
describes the operators within these categories in order of operator precedence.

Operator Precedence
When several operations occur in an expression, each part is evaluated and resolved in a predetermined
order known as operator precedence. Parentheses can be used to override the order of precedence and
force some parts of an expression to be evaluated before others. Operations within parentheses are always
performed before those outside parentheses.
Within parentheses, however, normal operator precedence is maintained. When expressions contain
operators from more than one category, arithmetic operators (including the string concatenation operator)
are evaluated first, comparison operators are evaluated next, and logical operators are evaluated last.
Within an expression, multiplication and division operations are evaluated before addition and subtraction
operations. When multiplication and division occur together in an expression, each operation is evaluated
as it occurs from left to right. Likewise, when addition and subtraction occur together in an expression,
each operation is evaluated in order of appearance from left to right. All comparison operators have equal
precedence; that is, they are evaluated in the left-to-right order in which they appear.
The string concatenation operator (+) is not really an arithmetic operator, but in precedence it does fall
after all arithmetic operators and before all comparison operators.

Arithmetic Operators
Use these operators to generate any numeric value to assign to a variable or to use in input, output, or
loops.
Operator Description

- (Negation) Indicates that the operand is a
negative value. The operand can
be any numeric expression.

* (Multiplication) Multiplies two numbers. The
operands can be any numeric
expressions.

/ (Division) Divides two numbers. The
operands can be any numeric
expressions.

MOD (Modular division) Divides two operands and returns
only the remainder. For example,
the result of the expression 19 MOD
7 (which can be read as 19
modulo 7) is 5. The operands can
be any numeric expressions.

+ (Addition) Sums two numbers. The operands
can be any numeric expressions.
Note that you also use + as the
string concatenation operator.

- (Subtraction) Finds the difference between two
numbers. The operands can be any
numeric expressions.

The String Concatenation Operator
Use the string concatenation operator to link literal strings and string variables.
Operator Description

+ (String concatenation) Concatenates two strings. For
example, the result of "Microsoft "
+ "Word" is "Microsoft Word".
You must ensure that spaces are
included in the strings being
concatenated to avoid running
words or characters together.
If you use the Str$() function to
return numbers as strings, note that
the function adds a space before
positive numbers (for example,
Str$(47) returns " 47"), but not
before negative numbers (for
example, Str$(-47) returns "-
47").
Note that you also use + as the
addition operator.

Comparison Operators
Use these operators, also known as relational operators, to compare two expressions (numeric or string)
and return true (-1) or false (0) values for use in control structures such as If conditionals and While...
Wend loops. The following table lists the comparison operators and the conditions that determine whether
the result is true or false.
Operator True False

= (Equal to) exp1 = exp2 exp1 <> exp2
<> (Not equal to) exp1 <> exp2 exp1 = exp2
< (Less than) exp1 < exp2 exp1 >= exp2
> (Greater than) exp1 > exp2 exp1 <= exp2
<= (Less than or equal to) exp1 <= exp2 exp1 > exp2
>= (Greater than or equal to) exp1 >= exp2 exp1 < exp2

Logical Operators
Use these operators in combination with comparison expressions to create compound logical expressions
that return true (-1) or false (0) values.
Operator Description

AND If, and only if, both expressions
evaluate true, the result is true. If
either expression evaluates false,
the result is false. The result is
determined as follows:
True AND True True
False AND True False
True AND False False
False AND False False

OR If either or both expressions
evaluate true, the result is true.
The result is determined as
follows:
True OR True True
False OR True True
True OR False True
False OR False False

NOT The result is determined as
follows:
NOT False True
NOT True False
Note that a NOT compound
expression evaluates as described
only when the operands are
comparisons or numeric true and
false values, where true is -1 and
false is 0 (zero).

Predefined Bookmarks
Example

Word sets and automatically updates a number of reserved bookmarks. You can use these predefined
bookmarks just as you use the ones that you place in documents, except that you don't have to set them
and they are not listed in the Go To dialog box (Edit menu). The following table describes the predefined
bookmarks available in Word.
Bookmark Description

\Sel Current selection or the insertion
point.

\PrevSel1 Most recent selection where
editing occurred; going to this
bookmark is equivalent to running
the GoBack statement once.

\PrevSel2 Second most recent selection
where editing occurred; going to
this bookmark is equivalent to
running the GoBack statement
twice.

\StartOfSel Start of the current selection.
\EndOfSel End of the current selection.
\Line Current line or the first line of the

current selection. If the insertion
point is at the end of a line that is
not the last line in the paragraph,
the bookmark includes the entire
next line.

\Char Current character, which is the
character following the insertion
point if there is no selection, or the
first character of the selection.

\Para Current paragraph, which is the
paragraph containing the insertion
point or, if more than one
paragraph is selected, the first
paragraph of the selection. Note
that if the insertion point or
selection is in the last paragraph of
the document, the "\Para"
bookmark does not include the
paragraph mark.

\Section Current section, including the
break at the end of the section, if
any. The current section contains
the insertion point or selection. If
the selection contains more than
one section, the "\Section"
bookmark is the first section in the
selection.

\Doc Entire contents of the active
document, with the exception of
the final paragraph mark.

\Page Current page, including the break
at the end of the page, if any. The
current page contains the insertion
point. If the current selection
contains more than one page, the
"\Page" bookmark is the first page
of the selection. Note that if the
insertion point or selection is in
the last page of the document, the
"\Page" bookmark does not
include the final paragraph mark.

\StartOfDoc Beginning of the document.
\EndOfDoc End of the document.
\Cell Current cell in a table, which is the

cell containing the insertion point.
If one or more cells of a table are
included in the current selection,
the "\Cell" bookmark is the first
cell in the selection.

\Table Current table, which is the table
containing the insertion point or
selection. If the selection includes
more than one table, the "\Table"
bookmark is the entire first table
of the selection, even if the entire
table is not selected.

\HeadingLevel The heading that contains the
insertion point or selection, plus
any subordinate headings and text.
If the current selection is body
text, the "\HeadingLevel"
bookmark includes the preceding
heading, plus any headings and
text subordinate to that heading.

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Predefined Bookmarks Example
The following macro demonstrates a typical use of predefined bookmarks. The macro moves line by line
through a document from the current line and removes any leading spaces from the lines. The While...
Wend instruction uses the "\Sel" (current selection) and "\EndOfDoc" bookmarks with the
CmpBookmarks() function to determine whether the selection is at the end of the document. When the end
of the document is reached, Word displays a message to alert the user.
Sub MAIN
StartOfLine
While CmpBookmarks("\Sel", "\EndOfDoc")

A$ = GetBookmark$("\Line")
B = Asc(A$)
If B = 32 Then DeleteWord
EndOfLine
CharRight

Wend
MsgBox "End of document."
End Sub

The CmpBookmarks() function compares two bookmarks and can return a number of different values
according to the relative location and size of the bookmarks.
For other examples of predefined bookmarks used in WordBasic macros, see CmpBookmarks(),
CopyBookmark, ParaDown, Select Case.

Conventions
In the Help topic for each WordBasic statement or function, the statement or function name appears as a
bold heading at the top of the window. One or more syntax statements follow the bold heading. Here is a
syntax example:
CharLeft [Count] [, Select]
When you type an instruction, you must include all the items in the syntax that are formatted in bold. Items
enclosed in brackets are optional. Do not type the brackets when including an optional item. Italic
formatting indicates argument names or value placeholders that you replace with actual values or variables
to which you've already assigned values.
For example, you could use any of the following CharLeft instructions in a macro:
CharLeft
CharLeft 1
CharLeft 1, 1

If you assigned acceptable values to the numeric variables move and extend, you could use the following
CharLeft instruction:
CharLeft move, extend

Note that you must separate arguments with commas. The acceptable values for arguments are listed in the
remarks following the syntax, usually in a table. Some syntax examples include required arguments. For
example:
EditReplaceStyle .Style = text
To use this statement, you must include the .Style argument---note the period preceding the argument
name. You must type all the text that appears in bold and supply a specific value or variable for the italic
placeholder, as in the following examples:
EditReplaceStyle .Style = "Heading 1"
EditReplaceStyle .Style = "Normal"

Other statements and functions include a mixture of required and optional arguments:
EditAutoText .Name = text [, .Context = number] [, .InsertAs = number] [, .Insert] [, .Add] [, .
Delete]
According to this syntax, you must include the first argument and a value, but the remaining arguments are
optional. As the syntax indicates, every argument in your final macro instruction must be separated by a
comma. For example:
EditAutoText .Name = "disclaimer", .Context = 1, .Add

Most topics in WordBasic Help include examples of how to use specific statements and functions.

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppActivate Example
This example activates File Manager if it is running and starts File Manager if it is not running:
If AppIsRunning("File Manager") Then

AppActivate "File Manager"
Else

Shell "WINFILE.EXE"
End If

AppActivate
Example

AppActivate WindowName$ [, Immediate]
Activates a running application.
Argument Explanation

WindowName$ The name of the application
window to activate, as it appears
in the title bar or Task List.
It is not necessary to specify the
entire window name. For example,
to indicate a window named
"Notepad - FILES.TXT," you can
specify "Notepad - FILES.TXT,"
"Notepad," or even "Note." The
first window name in the Task List
that matches the beginning of the
specified string is affected. The
case of characters is not significant
in WindowName$.

Immediate Specifies when to switch to the
other application:
0 (zero) or omitted If Word is not active,

Word flashes its title bar or icon,
waits for the user to activate Word,
and then activates the other
application.

1 Word immediately activates the other
application, even if Word is not the
active application.

See also
Application Control Statements and Functions
AppClose
AppGetNames
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule
Shell

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppClose Example
This example closes Microsoft Excel if it is running:
If AppIsRunning("Microsoft Excel") Then

AppClose "Microsoft Excel"
End If

AppClose
Example

AppClose [WindowName$]
Closes the specified application.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
Shell

AppCount()
AppCount()
Returns the number of open applications (including hidden applications that do not appear in the Task
List). For an example, see AppGetNames Example.

See also
Application Control Statements and Functions
AppGetNames

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppGetNames Example
This example inserts a list of application window names at the insertion point:
size = AppCount() - 1
Dim winnames$(size)
AppGetNames winnames$()
For i = 0 To size

Insert winnames$(i)
InsertPara

Next

AppGetNames, AppGetNames()
Example

AppGetNames ArrayVariable$()
AppGetNames(ArrayVariable$())
The AppGetNames statement fills a previously defined string array with the names of open application
windows (including hidden application windows that do not appear in the Task List). If ArrayVariable$()
has fewer elements than the number of open applications, the array is filled with as many names as there
are elements, and an error does not occur.
The AppGetNames() function carries out the same action and also returns the number of open application
windows (including hidden application windows that do not appear in the Task List). AppGetNames()
returns the same value as AppCount().

See also
Application Control Statements and Functions
AppActivate
AppClose
AppCount()
AppIsRunning

AppHide
AppHide [WindowName$]
Hides the specified application and removes its window name from the Task List.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

See also
Application Control Statements and Functions
AppClose
AppShow

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppInfo$() Example
This example displays a message box containing the version number of Word:
ver$ = AppInfo$(2)
MsgBox ver$, "Microsoft Word Version", 64

AppInfo$()
Example

AppInfo$(Type)
Returns one of 25 types of information about the Word application. Note that the GetSystemInfo$()
function returns similar information. Also, you can use the GetSystemInfo statement to fill an array with
system information.
Type is one of the following numeric codes, specifying the type of information to return.
Type Explanation

1 Environment (for example,
"Windows 3.10").

2 Word version number (for
example, "6.0").

3 Returns -1 if Word is in a special
mode (for example, CopyText or
MoveText mode).

4 Distance from the left edge of the
screen to the left border of the
Word window, in points (72 points
= 1 inch). Note that when Word is
maximized, AppInfo$(4)
returns a negative value to indicate
the borders are beyond the edge of
the screen (this value varies
depending on the width of the
borders).

5 Distance from the top of the screen
to the top border of the Word
window, in points. Note that when
Word is maximized, AppInfo$
(5) returns a negative value to
indicate the borders are beyond the
edge of the screen (this value
varies depending on the width of
the borders).

6 Width of the workspace, in points;
the width increases as you hide
Word screen elements or widen
the Word window. Note that
increasing the zoom percentage
decreases the return value and vice
versa.

7 Height of the workspace, in points;
the height increases as you hide
Word screen elements or increase
the height of the Word window.
Note that increasing the zoom
percentage decreases the return
value and vice versa.

8 Returns -1 if the application is
maximized.

9 Total conventional memory, in
kilobytes.

10 Available conventional memory,
in kilobytes.

11 Total expanded memory, in
kilobytes.

12 Available expanded memory, in
kilobytes.

13 Returns -1 if a math coprocessor is
installed.

14 Returns -1 if a mouse is installed.

15 Available disk space, in kilobytes.
16 Returns the language version of

Word. For example, returns
"Français"for the French version
of Word. For a list of languages,
see ToolsLanguage.

17 Returns the list separator setting
("sList") in the [intl] section of
WIN.INI.

18 Returns the decimal setting
("sDecimal") in the [intl] section
of WIN.INI.

19 Returns the thousand separator
("sThousand") in the [intl] section
of WIN.INI.

20 Returns the currency symbol
("sCurrency") in the [intl] section
of WIN.INI.

21 Returns the clock format ("iTime")
in the [intl] section of WIN.INI.

22 Returns the A.M. string ("s1159")
in the [intl] section of WIN.INI.

23 Returns the P.M. string ("s2359")
in the [intl] section of WIN.INI.

24 Returns the time separator
("sTime") in the [intl] section of
WIN.INI.

25 Returns the date separator
("sDate") in the [intl] section of
WIN.INI.

See also
Application Control Statements and Functions
AppGetNames
GetSystemInfo

AppIsRunning()
AppIsRunning(WindowName$)
Returns -1 if the specified application is running or 0 (zero) if it is not.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. For more
information on WindowName$,
see AppActivate.

For an example, see AppActivate Example.

See also
Application Control Statements and Functions
AppActivate
AppClose

AppMaximize, AppMaximize()
AppMaximize [WindowName$] [, State]
AppMaximize([WindowName$])
The AppMaximize statement maximizes or restores the specified application.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

State Specifies whether to maximize or
restore the application:
0 (zero) Restores the application.
1 Maximizes the application.
Omitted Toggles between restored and

maximized states.
If the state of the application
changes, it is activated. If the state
does not change (for example, if
you run the instruction
AppMaximize "Microsoft Excel",
1 and Microsoft Excel is already
maximized), the application is not
activated.

The AppMaximize() function returns the following values.
Value Explanation

-1 If the application is maximized
0 (zero) If the application is not maximized

See also
Application Control Statements and Functions
AppMinimize
AppMove
AppRestore
AppSize
DocMaximize

AppMinimize, AppMinimize()
AppMinimize [WindowName$] [, State]
AppMinimize([WindowName$])
The AppMinimize statement minimizes or restores the specified application.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

State Specifies whether to minimize or
restore the application:
0 (zero) Restores the application.
1 Minimizes the application.
Omitted Toggles between restored and

minimized states.
If the application is restored from
an icon, it is activated. If the state
does not change or if the
application is minimized, the
application is not activated.

Note
If an untrapped error occurs in a macro while Word is minimized, the macro halts and the Word icon
flashes. When Word is restored, it displays a message indicating the nature of the error.
The AppMinimize() function returns the following values.
Value Explanation

-1 If the application is minimized
0 (zero) If the application is not minimized

See also
Application Control Statements and Functions
AppMaximize
AppMove
AppRestore
AppSize
DocMinimize

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppMove Example
This example starts Microsoft Excel if it is not running and then arranges Word and Microsoft Excel into
nonoverlapping windows, each one-half the height of the screen:
If AppIsRunning("Microsoft Excel") = 0 Then MicrosoftExcel
AppRestore
AppMove 0, 0
AppSize 480, 180
AppRestore "Microsoft Excel"
AppMove "Microsoft Excel", 0, 180
AppSize "Microsoft Excel", 480, 180

AppMove
Example

AppMove [WindowName$,] HorizPos, VertPos
Moves the specified application window or icon to a position relative to the upper-left corner of the screen.
If the application is maximized, an error occurs.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window or icon name, as it
appears in the title bar or Task
List. If omitted, Word is assumed.
For more information on
WindowName$, see AppActivate.

HorizPos, VertPos The horizontal (HorizPos) and
vertical (VertPos) distance from
the upper-left corner of the screen
to the upper-left corner of the
application window or icon, in
points (72 points = 1 inch).
Negative measurements are
allowed only if you specify
WindowName$.

See also
Application Control Statements and Functions
AppRestore
AppSize
AppWindowPosLeft
AppWindowPosTop
DocMove

AppRestore, AppRestore()
AppRestore [WindowName$]
AppRestore([WindowName$])
The AppRestore statement restores the specified application from a maximized or minimized state and
activates the application. If the specified application is already restored, AppRestore has no effect.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

The AppRestore() function returns the following values.
Value Explanation

-1 If the application is restored
0 (zero) If the application is not restored

For an example, see AppMove Example.

See also
Application Control Statements and Functions
AppMaximize
AppMinimize
AppMove
AppSize
DocRestore

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AppSendMessage Example
This example starts the Windows Help application and then sends it a message that displays the Open
dialog box. The number 273 is the decimal value associated with the message WM_COMMAND and
1101 is the parameter that specifies the Open command. Lparam is ignored in this case, but must still be
specified as 0 (zero).
Shell "WINHELP.EXE"
AppSendMessage "Windows Help", 273, 1101, 0

AppSendMessage
Example

AppSendMessage [WindowName$,] Message, Wparam, Lparam
Sends a Windows message and its associated parameters to the application specified by WindowName$.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

Message A decimal number corresponding
to the message you want to send.
If you have the Microsoft
Windows 3.1 Software
Development Kit, you can look up
the name of the message in
WINDOWS.H and then convert
the associated hexadecimal
number to a decimal number using
Calculator.

Wparam,
Lparam

Parameters appropriate for the
message you are sending. For
information on what these values
represent, see the reference topic
for the message in the Microsoft
Windows 3.1 Programmer's
Reference, Volume 3, available in
the Microsoft Windows 3.1
Software Development Kit or from
Microsoft Press. To retrieve the
appropriate values, you may need
to use the Spy utility (which
comes with the Microsoft
Windows 3.1 SDK).

See also
Application Control Statements and Functions
AppActivate
AppIsRunning
DDEExecute
DDEPoke

AppShow
AppShow [WindowName$]
Makes visible and activates an application previously hidden with AppHide and restores the application
window name to the Task List. If the application is not hidden, AppShow has no effect.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it would appear
in the title bar or Task List if the
application were visible. If
omitted, Word is assumed. For
more information on
WindowName$, see AppActivate.

See also
Application Control Statements and Functions
AppActivate
AppHide

AppSize
AppSize [WindowName$,] Width, Height
Sizes an application window to a specified width and height. If the application is maximized or minimized,
an error occurs.
Argument Explanation

WindowName$ A string that matches the
beginning of an application
window name, as it appears in the
title bar or Task List. If omitted,
Word is assumed. For more
information on WindowName$,
see AppActivate.

Width, Height The width and height of the
application window, in points (72
points = 1 inch).

For an example, see AppMove Example.

See also
Application Control Statements and Functions
AppMove
AppRestore
AppWindowHeight
AppWindowWidth
DocSize

AppWindowHeight, AppWindowHeight()
AppWindowHeight [WindowName$,] Height
AppWindowHeight([WindowName$])
The AppWindowHeight statement adjusts the height of an application window to a specified number of
points (if WindowName$ is omitted, Word is assumed). AppWindowHeight allows you to change the
height of a window without affecting its width (unlike AppSize). The AppWindowHeight() function
returns the height of an application window, in points. For argument descriptions, see AppSize.

See also
Application Control Statements and Functions
AppSize
AppWindowPosLeft
AppWindowPosTop
AppWindowWidth

AppWindowPosLeft, AppWindowPosLeft()
AppWindowPosLeft [WindowName$,] HorizPos
AppWindowPosLeft([WindowName$])
The AppWindowPosLeft statement moves an application window or icon to a horizontal position specified
in points (if WindowName$ is omitted, Word is assumed). AppWindowPosLeft allows you to change the
horizontal position of a window or icon without affecting its vertical position (unlike AppMove). The
AppWindowPosLeft() function returns the horizontal position of an application window or icon, in points.
For argument descriptions, see AppMove.

See also
Application Control Statements and Functions
AppMove
AppWindowHeight
AppWindowPosTop
AppWindowWidth

AppWindowPosTop, AppWindowPosTop()
AppWindowPosTop [WindowName$,] VertPos
AppWindowPosTop([WindowName$])
The AppWindowPosTop statement moves an application window or icon to a vertical position specified in
points (if WindowName$ is omitted, Word is assumed). AppWindowPosTop allows you to change the
vertical position of a window or icon without affecting its horizontal position (unlike AppMove). The
AppWindowPosTop() function returns the vertical position of an application window or icon, in points.
For argument descriptions, see AppMove.

See also
Application Control Statements and Functions
AppMove
AppWindowHeight
AppWindowPosLeft
AppWindowWidth

AppWindowWidth, AppWindowWidth()
AppWindowWidth [WindowName$,] Width
AppWindowWidth([WindowName$])
The AppWindowWidth statement adjusts the width of an application window to a specified number of
points (if WindowName$ is omitted, Word is assumed). AppWindowWidth allows you to change the
width of a window without affecting its height (unlike AppSize). The AppWindowWidth() function
returns the width of an application window, in points. For argument descriptions, see AppSize.

See also
Application Control Statements and Functions
AppSize
AppWindowHeight
AppWindowPosLeft
AppWindowPosTop

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ControlRun Example
This example runs the Control Panel:
ControlRun .Application = 1

ControlRun
Example

ControlRun .Application = number
Runs either the Clipboard or the Control Panel (Windows). If you want to run a different program, use the
Shell statement.
Argument Explanation

.Application The application to run:
0 (zero) Clipboard
1 Control Panel

See also
Application Control Statements and Functions
Shell

ExitWindows
ExitWindows
Closes all open applications and quits Windows. ExitWindows does not save changes or prompt you to
save changes in Word documents; it does prompt you to save changes in other open applications.

See also
Application Control Statements and Functions
FileExit

FileExit
FileExit [Save]
Quits Word.
Argument Explanation

Save Determines whether Word saves
each document before closing it if
it is "dirty" --- that is, if changes
have been made since the last time
the file was saved:
0 (zero) or omitted Prompts the user to

save each changed document.
1 Saves all edited documents before

quitting.
2 Quits without saving changed

documents.

See also
Application Control Statements and Functions
AppClose
ExitWindows
FileCloseAll

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

GetSystemInfo Examples
This example creates a table of system information in a new document. First, the example defines and fills
an array with labels for each type of system information. Second, the example opens a new document and
defines the info$() array, which GetSystemInfo then fills with the system information. Finally, the For...
Next loop inserts the table of information.
Dim a$(11)
a$(0) = "Environment" : a$(1) = "CPU" : a$(2) = "MS-DOS"
a$(3) = "Windows" : a$(4) = "% Resources" : a$(5) = "Disk Space"
a$(6) = "Mode" : a$(7) = "Coprocessor" : a$(8) = "Country"
a$(9) = "Language" : a$(10) = "Pixels High" : a$(11) = "Pixels Wide"
Dim info$(11)
GetSystemInfo info$()
FileNewDefault
FormatTabs .Position = "1.5 in", .Set
For i = 0 To 11

Insert a$(i) + Chr$(9) + info$(i)
InsertPara

Next

The following example displays in a message box the amount of available disk space:
space$ = GetSystemInfo$(26)
MsgBox "Available disk space: " + space$ + " bytes."

GetSystemInfo, GetSystemInfo$()
Example

GetSystemInfo Array$()
GetSystemInfo$(Type)
The GetSystemInfo statement fills a previously defined string array with information about the
environment in which Word is running.
The GetSystemInfo$() function returns one piece of information about the environment in which Word is
running. Type is one of the following numeric codes, specifying the type of information to return.
Type Explanation

21 The environment (for example,
"Windows" or "Windows NT")

22 The type of central processing
unit, or CPU (for example,
"80286," "80386," "i486," or
"Unknown")

23 The MS-DOS version number
24 The Windows version number
25 The percent of system resources

available
26 The amount of available disk

space, in bytes
27 The mode under which Windows

is running: "Standard" or "386-
Enhanced

28 Whether a math coprocessor is
installed: "Yes" or "No"

29 The country setting ("iCountry")
in the [intl] section of WIN.INI

30 The language setting
("sLanguage") in the [intl] section
of WIN.INI

31 The vertical display resolution, in
pixels

32 The horizontal display resolution,
in pixels

See also
Application Control Statements and Functions
AppInfo$()

MicrosoftAccessMicrosoftAccess
Starts Microsoft Access if it is not running or switches to Microsoft Access if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicrosoftExcelMicrosoftExcel
Starts Microsoft Excel if it is not running or switches to Microsoft Excel if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicrosoftFoxProMicrosoftFoxPro
Starts Microsoft FoxPro if it is not running or switches to Microsoft FoxPro if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicrosoftMailMicrosoftMail
Starts Microsoft Mail if it is not running or switches to Microsoft Mail if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicrosoftPowerPointMicrosoftPowerPoint
Starts Microsoft PowerPoint if it is not running or switches to Microsoft PowerPoint if it is already
running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule

MicrosoftProjectMicrosoftProject
Starts Microsoft Project if it is not running or switches to Microsoft Project if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftPublisher
MicrosoftSchedule

MicrosoftPublisherMicrosoftPublisher
Starts Microsoft Publisher if it is not running or switches to Microsoft Publisher if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftSchedule

MicrosoftScheduleMicrosoftSchedule
Starts Microsoft Schedule+ if it is not running or switches to Microsoft Schedule+ if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher

RunPrintManagerRunPrintManager
Starts Print Manager (Windows) if it is not running or switches to Print Manager if it is already running.

See also
Application Control Statements and Functions
AppActivate
AppIsRunning()
ControlRun

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Shell Examples
This example starts Notepad and loads the document TORT.TXT:
Shell "Notepad TORT.TXT"

The following example starts Microsoft Excel as a minimized window:
Shell "EXCEL.EXE", 2

The following example creates a text-only file (DOCLIST.TXT) that lists documents with the filename
extension .DOC in the C:\WINWORD directory. You might use an instruction like this to create a file you
can open later for sequential input. The "/c" switch ensures that control is returned to Word after the
command line following "/c" is run.
Shell Environ$("COMSPEC") + "/c dir /b C:\WINWORD*.DOC > DOCLIST.TXT"

Shell
Example

Shell Application$ [, WindowStyle]
Starts another application (such as Microsoft Excel) or process (such as a batch file or executable file) in
Windows.
Argument Explanation

Application$ The path and filename required to
find the application, as well as any
valid switches or arguments you
choose to include, just as you
would type them in the Run dialog
box in Program Manager.
Application$ can be a document
filename by itself, provided the
filename extension is registered in
the [Extensions] section of the
WIN.INI file. Shell starts the
associated application and opens
the document. To display an MS-
DOS window, specify Environ$
("COMSPEC") as Application$.

WindowStyle How the window containing the
application should be displayed
(some applications ignore this):
0 (zero) Minimized window (icon)
1 Normal window (current window

size, or previous size if minimized)
2 Minimized window (for Microsoft

Excel compatibility)
3 Maximized window
4 Deactivated window

See also
Application Control Statements and Functions
AppActivate
DDEInitiate()
Environ$()

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

GetAutoCorrect$() Example
This example checks the replacement text for the AutoCorrect entry "uk." If the replacement text doesn't
match "United Kingdom," the AutoCorrect entry is modified to do so.
If GetAutoCorrect$("uk") <> "United Kingdom" Then

ToolsAutoCorrect .Replace = "uk", \
.With = "United Kingdom", .Add

End If

GetAutoCorrect$()
Example

GetAutoCorrect$(AutoCorrectEntry$)
Returns the replacement text for the specified entry in the Replace column of the AutoCorrect dialog box
(Tools menu). If AutoCorrectEntry$ doesn't exist, GetAutoCorrect$() returns an empty string ("").
Argument Explanation

AutoCorrectEntry$ The text specified in the Replace
column for an AutoCorrect entry
in the AutoCorrect dialog box.
AutoCorrectEntry$ is not case-
sensitive. For example, you can
specify an entry "GW" as either
"GW" or "gw."

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ToolsAutoCorrect Example
This example adds a replacement entry and activates automatic replacement of text:
ToolsAutoCorrect .ReplaceText = 1, .Replace = "sr", \

.With = "Stella Richards", .Add

ToolsAutoCorrect
Example

ToolsAutoCorrect [.SmartQuotes = number] [, .InitialCaps = number] [, .SentenceCaps = number] [, .
Days = number] [, .ReplaceText = number] [, .Formatting = number] [, .Replace = text] [, .With =
text] [, .Add] [, .Delete]
Sets AutoCorrect options. The arguments for the ToolsAutoCorrect statement correspond to the options in
the AutoCorrect dialog box (Tools menu).
Argument Explanation

.SmartQuotes If 1, Word inserts "smart"
quotation marks (" " and ' ') and
apostrophes (') .

.InitialCaps If 1, Word corrects words in which
the first two letters are capitalized.
For example, "WOrd" becomes
"Word."

.SentenceCaps If 1, Word capitalizes the first
letter of new sentences.

.Days If 1, Word capitalizes the days of
the week. For example, "tuesday"
becomes "Tuesday."

.ReplaceText If 1, activates automatic
replacement of text.

.Formatting If 1, formatting is stored with the
replacement text when a
replacement entry is added;
available only if text is selected
before running ToolsAutoCorrect.

.Replace The text you want to replace
automatically with the text
specified by .With (for example, a
person's initials).

.With The text you want to insert
automatically when the text
specified by .Replace is typed (for
example, a person's full name).

.Add Adds the text specified by .
Replace and .With to the list of
replacement entries.

.Delete Deletes the replacement entry
specified by .Replace.

See also
AutoCorrect Statements and Functions
ToolsAutoCorrectDays
ToolsAutoCorrectInitialCaps
ToolsAutoCorrectReplaceText
ToolsAutoCorrectSentenceCaps
ToolsAutoCorrectSmartQuotes

ToolsAutoCorrectDays, ToolsAutoCorrectDays()
ToolsAutoCorrectDays [On]
ToolsAutoCorrectDays()
The ToolsAutoCorrectDays statement selects or clears the Capitalize Names Of Days check box in the
AutoCorrect dialog box (Tools menu).
Argument Explanation

On Specifies whether to select or clear
the check box:
1 Selects the check box.
0 (zero) Clears the check box.
Omitted Toggles the check box.

The ToolsAutoCorrectDays() function returns the following values.
Value Explanation

0 (zero) If the Capitalize Names Of Days
check box is cleared

-1 If the Capitalize Names Of Days
check box is selected

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect

ToolsAutoCorrectInitialCaps, ToolsAutoCorrectInitialCaps()
ToolsAutoCorrectInitialCaps [On]
ToolsAutoCorrectInitialCaps()
The ToolsAutoCorrectInitialCaps statement selects, clears, or toggles the Correct TWo INitial CApitals
check box in the AutoCorrect dialog box (Tools menu). The ToolsAutoCorrectInitialCaps() function
returns information about the state of the check box. For information on arguments and return values, see
ToolsAutoCorrectDays.

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectReplaceText, ToolsAutoCorrectReplaceText()
ToolsAutoCorrectReplaceText [On]
ToolsAutoCorrectReplaceText()
The ToolsAutoCorrectReplaceText statement selects, clears, or toggles the Replace Text As You Type
check box in the AutoCorrect dialog box (Tools menu). The ToolsAutoCorrectReplaceText() function
returns information about the state of the check box. For information on arguments and return values, see
ToolsAutoCorrectDays.

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectSentenceCaps, ToolsAutoCorrectSentenceCaps()
ToolsAutoCorrectSentenceCaps [On]
ToolsAutoCorrectSentenceCaps()
The ToolsAutoCorrectSentenceCaps statement selects, clears, or toggles the Capitalize First Letter Of
Sentences check box in the AutoCorrect dialog box (Tools menu). The ToolsAutoCorrectSentenceCaps()
function returns information about the state of the check box. For information on arguments and return
values, see ToolsAutoCorrectDays.

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

ToolsAutoCorrectSmartQuotes, ToolsAutoCorrectSmartQuotes()
ToolsAutoCorrectSmartQuotes [On]
ToolsAutoCorrectSmartQuotes()
The ToolsAutoCorrectSmartQuotes statement selects, clears, or toggles the Change 'Straight Quotes' To
'Smart Quotes' check box in the AutoCorrect dialog box (Tools menu). The
ToolsAutoCorrectSmartQuotes() function returns information about the state of the check box. For
information on arguments and return values, see ToolsAutoCorrectDays.

See also
AutoCorrect Statements and Functions
ToolsAutoCorrect
ToolsAutoCorrectDays

AutoTextAutoText
Displays the AutoText dialog box if there is a selection (and proposes up to the first 32 characters of the
selection for the unique entry name) or, if there is no selection, attempts to match the text before or
surrounding the insertion point with an AutoText entry and insert the entry (including its formatting, if
any). Word looks for the entry first in the active template, then in the Normal template, and finally in each
loaded global template in the order listed in the Templates And Add-ins dialog box (File menu). If no
match can be made, an error occurs. AutoText corresponds to the AutoText button on the Standard toolbar.

See also
AutoText Statements and Functions
AutoTextName$()
CountAutoTextEntries()
EditAutoText
GetAutoText$()
InsertAutoText
SetAutoText

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

AutoTextName$() Example
This example creates a new document that lists all AutoText entries in the Normal template and any
loaded global templates. Entry names are inserted with bold formatting and are followed by the contents of
the entry.
FileNewDefault
For count = 1 To CountAutoTextEntries()

a$ = AutoTextName$(count)
Bold 1 : Insert a$
InsertPara
Bold 0 : EditAutoText .Name = a$, .Insert
InsertPara : InsertPara

Next

AutoTextName$()
Example

AutoTextName$(Count [, Context])
Returns the name of an AutoText entry in the specified context.
Argument Explanation

Count The number of the AutoText entry,
from 1 to the total number of
AutoText entries defined in the
given context (you can obtain the
total using CountAutoTextEntries
()). AutoText entries are listed in
alphabetic order.

Context The context in which to return the
name of an AutoText entry:
0 (zero) or omitted Normal template and

any loaded global templates
1 Active template
Note that if Context is 1 and the
active template is the Normal
template, AutoTextName$()
generates an error.

See also
AutoText Statements and Functions
AutoText
CountAutoTextEntries()
EditAutoText
GetAutoText$()
InsertAutoText
SetAutoText

CountAutoTextEntries()
CountAutoTextEntries([Context])
Returns the number of AutoText entries defined for the specified context.
Argument Explanation

Context The context in which to count
AutoText entries:
0 (zero) or omitted Normal template and

any loaded global templates
1 Active template
Note that if Context is 1 and the
active template is the Normal
template, CountAutoTextEntries()
returns 0 (zero).

For an example, see AutoTextName$() Example.

See also
AutoText Statements and Functions
AutoTextName$()
GetAutoText$()

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

EditAutoText Examples
This example selects the text of the first paragraph (not including the paragraph mark) and then defines it
as an AutoText entry named "MainHead," stored in the Normal template:
StartOfDocument
EditGoTo "\Para"
CharLeft 1, 1
EditAutoText .Name = "MainHead", .Context = 0, .Add

The following example inserts the "MainHead" AutoText entry without formatting:
EditAutoText .Name = "MainHead", .InsertAs = 1, .Insert

EditAutoText
Example

EditAutoText .Name = text [, .Context = number] [, .InsertAs = number] [, .Insert] [, .Add] [, .
Delete]
Inserts, adds, or deletes an AutoText entry. The arguments for the EditAutoText statement correspond to
the options in the AutoText dialog box (Edit menu).
Argument Explanation

.Name The name of the AutoText entry.

.Context A context for the new AutoText
entry:
0 (zero) or omitted Normal template
1 Active template
Note that .Context is used only
when Word adds an AutoText
entry. When inserting or deleting
an entry, Word automatically
looks for the entry first in the
active template and then in the
Normal template. When inserting
an entry and no match is found in
the active or Normal templates,
Word looks in each loaded global
template in the order listed in the
Templates And Add-ins dialog
box (File menu). You cannot
delete an AutoText entry from a
loaded global template.

.InsertAs Used with .Insert to control
whether the entry is inserted with
its formatting:
0 (zero) or omitted Entry is inserted with

formatting.
1 Entry is inserted as plain text.

You can specify only one of the following arguments.
Argument Explanation

.Insert Inserts the entry into the document

.Add Stores the entry in the template (if
there is no selection, an error
occurs)

.Delete Deletes the entry from the
template

If you do not specify .Insert, .Add, or .Delete, Word inserts the AutoText entry.

See also
AutoText Statements and Functions
AutoText
AutoTextName$()
CountAutoTextEntries()
GetAutoText$()
InsertAutoText
SetAutoText

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

GetAutoText$() Example
This example displays a message box containing the text of the AutoText entry named "Welcome," which
is stored in the active template:
MsgBox GetAutoText$("Welcome", 1)

GetAutoText$()
Example

GetAutoText$(Name$ [, Context])
Returns the unformatted text of the specified AutoText entry.
Argument Explanation

Name$ The name of the AutoText entry
Context Where the AutoText entry is

stored:
0 (zero) or omitted Normal template and

any loaded global templates
1 Active template
Note that if Context is 1 and the
active template is the Normal
template, GetAutoText$() returns
an empty string ("").

See also
AutoText Statements and Functions
AutoText
AutoTextName$()
CountAutoTextEntries()
EditAutoText
InsertAutoText
SetAutoText

InsertAutoText
InsertAutoText
Attempts to match the current selection or the text before or surrounding the insertion point with an
AutoText entry and insert the entry (including its formatting, if any). Word looks for the entry first in the
active template, then in the Normal template, and finally in each loaded global template in the order listed
in the Templates And Add-ins dialog box (File menu). If no match can be made, an error occurs.

See also
AutoText Statements and Functions
AutoText
AutoTextName$()
CountAutoTextEntries()
EditAutoText
GetAutoText$()
SetAutoText

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

SetAutoText Example
This example defines the AutoText entry "Disclaim" in the active template; "Disclaim" contains the text
assigned to text$:
text$ = "No warranty is either expressed or implied."
SetAutoText "Disclaim", text$, 1

SetAutoText
Example

SetAutoText Name$, Text$ [, Context]
Defines a text-only AutoText entry. Unlike an EditAutoText instruction that uses .Add, SetAutoText does
not require a selection.
Argument Explanation

Name$ The name of the new entry.
Text$ The text to be associated with the

entry.
Context Specifies the availability of the

entry:
0 (zero) or omitted Normal template

(available to all documents)
1 Active template (available only to

documents based on the active
template)

Note that if Context is 1 and the
active template is the Normal
template, SetAutoText generates
an error.

See also
AutoText Statements and Functions
AutoText
AutoTextName$()
CountAutoTextEntries()
EditAutoText
GetAutoText$()
InsertAutoText

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

BookmarkName$() Example
This example puts a list of every bookmark name in a document into the array mark$(). You could use this
array to present a list of bookmark names in a dialog box. Note that the size of the array is one less than
the number of bookmarks because the subscript for the first array element is 0 (zero), not 1.
numBookmarks = CountBookmarks()
arraySize = numBookmarks - 1
Dim mark$(arraySize)
For n = 0 To arraySize

mark$(n) = BookmarkName$(n + 1)
Next

BookmarkName$()
Example

BookmarkName$(Count)
Returns the name of the bookmark specified by Count.
Argument Explanation

Count The number of the bookmark,
from 1 to the total number of
bookmarks defined for the active
document (you can obtain the total
using CountBookmarks()). The
order of bookmark names is
determined by the order of the
bookmarks in the document.
You must specify Count;
otherwise, the function returns an
error. For example, a$ =
BookmarkName$() generates an
error.

See also
Bookmarks Statements and Functions
CountBookmarks()
GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

CmpBookmarks() Example
This example adds a string of characters in front of every line in a selection. The example first marks the
selected text with a bookmark and then uses a While...Wend loop controlled by three CmpBookmarks()
functions to add text in front of each line. The first CmpBookmarks() function tests whether the insertion
point and the selection, stored in the "Temp" bookmark, begin at the same point; this is true when the loop
begins. The second CmpBookmarks() function tests whether the insertion point is contained within
"Temp"; this is true as long as the insertion point is within the original selection. The third
CmpBookmarks() function tests whether the insertion point is at the end of the original selection. When
the insertion point moves beyond the original selection, the loop ends. Within the While...Wend loop is yet
another CmpBookmarks() instruction, which determines whether the selection is at the end of the
document, a special case.
CopyBookmark "\Sel", "Temp"
SelType 1
While CmpBookmarks("\Sel", "Temp") = 8 \

Or CmpBookmarks("\Sel", "Temp") = 6 \
Or CmpBookmarks("\Sel", "Temp") = 10 \
And leaveloop <> 1

EndOfLine
If CmpBookmarks("\Sel", "\EndOfDoc") = 0 Then leaveloop = 1
StartOfLine
Insert "***"
LineDown

Wend
EditGoTo "Temp"
EditBookmark "Temp", .Delete

CmpBookmarks()
Example

CmpBookmarks(Bookmark1$, Bookmark2$)
Compares the contents of two bookmarks. Use CmpBookmarks() with the predefined bookmarks in Word
to check the location of the insertion point or to create a macro that operates only within an area marked
with a bookmark. For example, using the " \ Sel" (current selection) bookmark and the " \ Para" bookmark,
you can set up a macro to operate only within a particular paragraph. For more information about
predefined bookmarks, see Predefined Bookmarks.
Argument Explanation

Bookmark1$ The first bookmark
Bookmark2$ The second bookmark

This function returns the following values.
Value Explanation

0 (zero) Bookmark1$ and Bookmark2$
are equivalent.

1 Bookmark1$ is entirely below
Bookmark2$.

2 Bookmark1$ is entirely above
Bookmark2$.

3 Bookmark1$ is below and inside
Bookmark2$.

4 Bookmark1$ is inside and above
Bookmark2$.

5 Bookmark1$ encloses
Bookmark2$.

6 Bookmark2$ encloses
Bookmark1$.

7 Bookmark1$ and Bookmark2$
begin at the same point, but
Bookmark1$ is longer.

8 Bookmark1$ and Bookmark2$
begin at the same point, but
Bookmark2$ is longer.

9 Bookmark1$ and Bookmark2$
end at the same place, but
Bookmark1$ is longer.

10 Bookmark1$ and Bookmark2$
end at the same place, but
Bookmark2$ is longer.

11 Bookmark1$ is below and
adjacent to Bookmark2$.

12 Bookmark1$ is above and
adjacent to Bookmark2$.

13 One or both of the bookmarks do
not exist.

See also
Bookmarks Statements and Functions
CopyBookmark
EditBookmark
EmptyBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

CopyBookmark Example
This example selects the current section, then sets one bookmark at the start of the section and another
bookmark at the end. You can use this technique to define starting points and end points between which
your macro operates.
EditGoTo "\Section"
CopyBookmark "\StartOfSel", "SectionStart"
CopyBookmark "\EndOfSel", "SectionEnd"

CopyBookmark
Example

CopyBookmark Bookmark1$, Bookmark2$
Sets Bookmark2$ to the insertion point or range of text marked by Bookmark1$. You can use this
statement with predefined bookmarks---such as " \ StartOfSel" and " \ EndOfSel" --- to set bookmarks
relative to the insertion point or selection. For more information about predefined bookmarks, see
Predefined Bookmarks.

See also
Bookmarks Statements and Functions
CmpBookmarks()
EditBookmark
SetEndOfBookmark
SetStartOfBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

CountBookmarks() Examples
This example creates an array containing every bookmark in the active document:
size = CountBookmarks() - 1
Dim marks$(size)
For count = 0 To size

marks$(count) = BookmarkName$(count + 1)
Next

The following example deletes all the bookmarks in the active document:
For n = 1 To CountBookmarks()

EditBookmark .Name = BookmarkName$(CountBookmarks()), \
.Delete

Next

CountBookmarks()
Example

CountBookmarks()
Returns the number of bookmarks in the active document. As the first example in this entry demonstrates,
you can use this function to define an array containing every bookmark in a document.

See also
Bookmarks Statements and Functions
BookmarkName$()
EditBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

EditBookmark Example
This example searches for a paragraph containing only the word "Index" (that is, the heading for the index)
, and then, if the heading is found, adds a bookmark in front of it. You could use this bookmark in another
EditBookmark instruction or with EditGoTo to move the insertion point to the index.
StartOfDocument
EditFind .Find = "^pIndex^p", .MatchCase = 1, \

.Direction = 0, .Format = 0
If EditFindFound() Then

CharLeft : CharRight
EditBookmark .Name = "Index", .Add

End If

EditBookmark
Example

EditBookmark .Name = text [, .SortBy = number] [, .Add] [, .Delete] [, .Goto]
Adds, deletes, or selects the specified bookmark. The arguments for the EditBookmark statement
correspond to the options in the Bookmark dialog box (Edit menu).
Argument Explanation

.Name The name of the bookmark

.SortBy Controls how the list of
bookmarks is sorted when you
display the Bookmark dialog box
with a Dialog or Dialog()
instruction:
0 (zero) By name
1 By location

You can specify only one of the following arguments.
Argument Explanation

.Add Adds a bookmark at the insertion
point or selection

.Delete Deletes the bookmark

.Goto Moves the insertion point or
selection to the bookmark

If you do not specify .Add, .Delete, or .Goto, Word adds the bookmark.

See also
Bookmarks Statements and Functions
BookmarkName$()
CmpBookmarks()
CopyBookmark
CountBookmarks()
EditGoTo
EmptyBookmark()
ExistingBookmark()
GetBookmark$()
SetEndOfBookmark
SetStartOfBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

EmptyBookmark() Example
This example verifies that the bookmark referred to in each REF field both exists and is not empty. If a
reference to a nonexistent or empty bookmark is encountered, an appropriate message box is displayed.
StartOfDocument
ViewFieldCodes 1
EditFind .Find = "^d REF", .Format = 0, .Wrap = 0
While EditFindFound()

CharLeft
WordRight 2
WordRight 1, 1
mark$ = RTrim$(Selection$())
If Not ExistingBookmark(mark$) Then

MsgBox mark$ + " is not a bookmark."
ElseIf EmptyBookmark(mark$) Then

MsgBox mark$ + " is an empty bookmark."
End If
CharRight
EditFind .Find = "^d REF", .Format = 0, .Wrap = 0

Wend

EmptyBookmark()
Example

EmptyBookmark(Name$)
Determines whether Name$ is an "empty" bookmark. An empty bookmark marks only a location for the
insertion point in a document; it does not mark any text. You can use EmptyBookmark() to verify that a
bookmark (for example, a bookmark referred to in a REF field) does indeed mark text.
This function returns the following values.
Value Explanation

-1 If the bookmark is empty (that is,
it marks no text)

0 (zero) If the bookmark is not empty or
does not exist

See also
Bookmarks Statements and Functions
BookmarkName$()
CmpBookmarks()
CountBookmarks()
EditBookmark
ExistingBookmark()
GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ExistingBookmark() Example
This macro displays a prompt in the status bar for the name of a bookmark to add. If the bookmark does
not yet exist, it is added. If the bookmark already exists, Word displays a message box that asks whether to
reset the bookmark. If the user answers No, the macro ends. Otherwise, the bookmark is reset.
Sub MAIN
Input "Bookmark to add", myMark$
If ExistingBookmark(myMark$) Then

ans = MsgBox(myMark$ + " already exists; reset?", 36)
If ans = 0 Then Goto bye

End If
EditBookmark myMark$, .Add
bye:
End Sub

ExistingBookmark()
Example

ExistingBookmark(Name$)
Indicates whether the bookmark specified by Name$ exists in the active document. This function returns
the following values.
Value Explanation

-1 If the bookmark exists
0 (zero) If the bookmark does not exist

See also
Bookmarks Statements and Functions
BookmarkName$()
CmpBookmarks()
CountBookmarks()
EditBookmark
EmptyBookmark()
GetBookmark$()

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

GetBookmark$() Examples
This example sets the variable first$ to the text of the first bookmark in the document:
first$ = GetBookmark$(BookmarkName$(1))

The following example sets the variable paratext$ to the text of the paragraph containing the insertion
point:
paratext$ = GetBookmark$("\Para")

The bookmark " \ Para" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

GetBookmark$()
Example

GetBookmark$(Name$)
Returns the text (unformatted) marked by the specified bookmark. If Name$ is not the name of a
bookmark in the active document, GetBookmark$() returns an empty string ("").

See also
Bookmarks Statements and Functions
BookmarkName$()
CountBookmarks()
EditBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

SetEndOfBookmark Example
This example marks the end of the current selection with the bookmark "EndPoint":
SetEndOfBookmark "\Sel", "EndPoint"

The bookmark " \ Sel" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

SetEndOfBookmark
Example

SetEndOfBookmark Bookmark1$ [, Bookmark2$]
Marks the end point of Bookmark1$ with Bookmark2$. If Bookmark2$ is omitted, Bookmark1$ is set to
its own end point.

See also
Bookmarks Statements and Functions
CopyBookmark
EditBookmark
SetStartOfBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

SetStartOfBookmark Example
This example marks either end of the current paragraph with bookmarks:
SetStartOfBookmark "\Para", "BeginPara"
SetEndOfBookmark "\Para", "EndPara"

The bookmark " \ Para" is one of several predefined bookmarks that Word defines and updates
automatically. For more information, see Predefined Bookmarks.

SetStartOfBookmark
Example

SetStartOfBookmark Bookmark1$ [, Bookmark2$]
Marks the starting point of Bookmark1$ with Bookmark2$. If Bookmark2$ is omitted, Bookmark1$ is set
to its own starting point.

See also
Bookmarks Statements and Functions
CopyBookmark
EditBookmark
SetEndOfBookmark

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

BorderBottom Example
This example applies a bottom border using one of two line styles, depending on whether the selection is
within a table. If the selection is within a table, a double border is applied; otherwise, a thick, single border
is applied.
If SelInfo(12) = - 1 Then

BorderLineStyle 8
BorderBottom 1

Else
BorderLineStyle 4
BorderBottom 1

End If

BorderBottom, BorderBottom()
Example

BorderBottom [On]
BorderBottom()
The BorderBottom statement applies or removes a bottom border for the selected paragraphs, table cells,
or graphic. Note that when you apply a bottom border to a series of paragraphs or table rows, the border
appears only beneath the last paragraph or row in the series. If you want a border to separate each
paragraph or row, use BorderInside.
Argument Explanation

On Specifies whether to apply or
remove a bottom border:
1 Applies the border
0 (zero) Removes the border
Omitted Toggles the border

The BorderBottom() function returns the following values.
Value Explanation

0 (zero) If at least one of the selected items
has no bottom border or if the
selection contains a mixture of
items (for example, a paragraph
and a table cell)

1 If each item in the selection is of
the same type and has a bottom
border

See also
Borders and Frames Statements and Functions
BorderInside
BorderLeft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderInside, BorderInside()
BorderInside [On]
BorderInside()
The BorderInside statement applies or removes inside borders for the selected paragraphs or table cells.
The following illustrations show inside borders within a series of paragraphs and a table.

Inside borders for Inside borders for a table
paragraphs

The BorderInside() function returns either 0 (zero) or 1, depending on whether all the selected paragraphs
or table cells are formatted with an inside border. Note that BorderInside() returns 0 (zero) if the selection
is a single table cell, regardless of the borders applied to the surrounding group of cells; a single table cell
can have bottom, left, right, and top borders, but not inside borders.
For complete descriptions of arguments and return values, see BorderBottom.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderLeft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderLeft, BorderLeft()
BorderLeft [On]
BorderLeft()
The BorderLeft statement applies or removes left borders for the selected paragraphs, table cells, or
graphic. The BorderLeft() function returns either 0 (zero) or 1, depending on whether the selected graphic
or all the selected paragraphs or table cells are formatted with a left border.
For complete descriptions of arguments and return values, see BorderBottom.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLineStyle
BorderNone
BorderOutside
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderLineStyle, BorderLineStyle()
BorderLineStyle Style
BorderLineStyle()
The BorderLineStyle statement specifies the line style for subsequent BorderBottom, BorderInside,
BorderLeft, BorderOutside, BorderRight, and BorderTop instructions.
Argument Explanation

Style One of 12 line styles:
0 (zero) None
1

2
3
4
5
6
7
8
9
10
11

For an example that uses BorderLineStyle, see BorderBottom Example.
The BorderLineStyle() function returns a number from 0 (zero) to 11 that corresponds to the line style that
will be applied by subsequent border instructions. Note that this line style does not necessarily match the
line style of borders in the selected paragraphs, table cells, or graphic.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLeft
BorderNone
BorderOutside
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderNone, BorderNone()
BorderNone [Remove]
BorderNone()
The BorderNone statement removes or applies all borders (left, right, top, bottom, and inside) for the
selected items. You can remove or apply all borders for a series of paragraphs or table rows, but not a
combination of paragraphs and table rows. To remove or apply borders for a graphic, you must first select
only that graphic.
Argument Explanation

Remove Specifies whether to remove or
apply all borders for the selection:
0 (zero) Applies borders
1 or omitted Removes borders

The BorderNone() function returns 0 (zero) if the selection contains at least one border and 1 if the
selection contains no borders.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLeft
BorderLineStyle
BorderOutside
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderOutside, BorderOutside()
BorderOutside [On]
BorderOutside()
The BorderOutside statement applies or removes outside borders for the selected paragraphs, table cells, or
graphic. The following illustrations show outside borders applied to a series of paragraphs and an entire
table.

Outside borders for Outside borders for a table
paragraphs

The BorderOutside() function returns either 0 (zero) or 1, depending on whether the selected graphic or all
the selected paragraphs or table cells are formatted with an outside border.
For complete descriptions of arguments and return values, see BorderBottom.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLeft
BorderLineStyle
BorderNone
BorderRight
BorderTop
FormatBordersAndShading
ShadingPattern

BorderRight, BorderRight()
BorderRight [On]
BorderRight()
The BorderRight statement applies or removes right borders for the selected paragraphs, table cells, or
graphic. The BorderRight() function returns either 0 (zero) or 1, depending on whether the selected
graphic or all the selected paragraphs or table cells are formatted with a right border.
For complete descriptions of arguments and return values, see BorderBottom.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLeft
BorderLineStyle
BorderNone
BorderOutside
BorderTop
FormatBordersAndShading
ShadingPattern

BorderTop, BorderTop()
BorderTop [On]
BorderTop()
The BorderTop statement applies or removes a top border for the selected paragraphs, table cells, or
graphic. Note that when you apply a top border to a series of paragraphs or table rows, the border appears
only above the first paragraph or row in the series. If you want a border to separate each paragraph or row,
use BorderInside.
The BorderTop() function returns either 0 (zero) or 1, depending on whether the selected graphic or all the
selected paragraphs or table cells are formatted with a top border.
For complete descriptions of arguments and return values, see BorderBottom.

See also
Borders and Frames Statements and Functions
BorderBottom
BorderInside
BorderLeft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
FormatBordersAndShading
ShadingPattern

FormatBordersAndShading
FormatBordersAndShading [.ApplyTo = number] [, .Shadow = number] [, .TopBorder = number] [, .
LeftBorder = number] [, .BottomBorder = number] [, .RightBorder = number] [, .HorizBorder =
number] [, .VertBorder = number] [, .TopColor = number] [, .LeftColor = number] [, .BottomColor =
number] [, .RightColor = number] [, .HorizColor = number] [, .VertColor = number] [, .FineShading
= number] [, .FromText = number or text] [, .Shading = number] [, .Foreground = number] [, .
Background = number] [, .Tab = text]
Sets border and shading formats for the selected paragraphs, table cells, or graphic. The arguments for the
FormatBordersAndShading statement correspond to the options in the Borders And Shading dialog box
(Format menu).
Argument Explanation

.ApplyTo If the selection consists of more
than one of the following items,
specifies to which item or items
the border format is applied:
0 (zero) Paragraphs
1 Graphic
2 Cells
3 Whole table
If .ApplyTo is omitted, the default
for the selection is assumed.

.Shadow Specifies whether to apply a
shadow to the border of
paragraphs or a graphic:
0 (zero) Does not apply a shadow.
1 Applies a shadow.
You cannot apply a shadow to a
table or table cells. If you want to
apply a shadow to a paragraph or
graphic, the item must have---or
you must specify---matching right,
left, top, and bottom borders.
Otherwise, an error occurs.

.TopBorder, .LeftBorder, .
BottomBorder, .
RightBorder

The line style for the border on the
top, left, bottom, and right edges
of paragraphs, cells, or a graphic,
in the range 0 (zero), which is no
border, through 11 (for a list of
line styles and their values, see
BorderLineStyle).

.HorizBorder The line style for the horizontal
border between paragraphs or
table cells, in the range 0 (zero),
which is no border, through 11.
The border does not appear unless
it is applied to at least two
consecutive paragraphs or table
rows.

.VertBorder The line style for the vertical
border between table cells, in the
range 0 (zero), which is no border,
through 11. The border does not
appear unless the table selection is
at least two cells wide. (When
applied to paragraphs, .
VertBorder has the same effect as .
LeftBorder.)

.TopColor, .LeftColor, .
BottomColor, .RightColor, .
HorizColor, .VertColor

The color to be applied to the
specified borders, in the range
from 0 (zero), which is Auto,
through 16 (for a list of colors and
their values, see CharColor).

.FineShading A shading pattern in the range 0
(zero) to 40 corresponding to a
shading percentage in 2.5 percent
increments. If .FineShading is
anything but 0 (zero), .Shading is
ignored.

.FromText The distance of the border from
adjacent text, in points or a text
measurement. Valid only for
paragraphs; otherwise, .FromText
must be an empty string ("") or
omitted or an error will occur.

.Shading The shading pattern to be applied
to the selection, in the range from
0 (zero), which is Clear, through
25 (for a list of shading patterns
and their values, see
ShadingPattern).

.Foreground The color to be applied to the
foreground of the shading, in the
range from 0 (zero), which is
Auto, through 16 (for a list of
colors and their values, see
CharColor).

.Background The color to be applied to the
background of the shading, in the
range from 0 (zero), which is
Auto, through 16.

.Tab Specifies which tab to select when
you display the Borders And
Shading dialog box with a Dialog
or Dialog() instruction:
0 (zero) Borders tab
1 Shading tab

See also
Borders and Frames Statements and Functions
Border Top
BorderBottom
BorderInside
BorderLeft
BorderLineStyle
BorderNone
BorderOutside
BorderRight
ShadingPattern

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

FormatFrame Example
This example selects and frames the current paragraph and then formats the frame as left-aligned, relative
to the current column, with a 0.13-inch gap between the frame and text above and below:
EditGoTo "\Para"
InsertFrame
FormatFrame .PositionHorz = 0, .PositionHorzRel = 2, \

.DistVertFromText = "0.13 in"

FormatFrame
Example

FormatFrame [.Wrap = number] [, .WidthRule = number] [, .FixedWidth = number or text] [, .
HeightRule = number] [, .FixedHeight = number or text] [, .PositionHorz = number or text] [, .
PositionHorzRel = number] [, .DistFromText = number or text] [, .PositionVert = number or text] [, .
PositionVertRel = number] [, .DistVertFromText = number or text] [, .MoveWithText = number] [, .
LockAnchor = number] [, .RemoveFrame]
Positions and sets options for the selected frame. If the insertion point or selection is not within a frame, an
error occurs. The arguments for the FormatFrame statement correspond to the options in the Frame dialog
box (Format menu).
Argument Explanation

.Wrap Specifies a Text Wrapping option:
0 (zero) Text does not wrap around the

frame.
1 Text wraps around the frame.

.WidthRule The rule used to determine the
width of the frame:
0 (zero) Auto (determined by paragraph

width).
1 Exactly (width will be exactly .

FixedWidth).
.FixedWidth If .WidthRule is 1, the width of the

frame in points or a text
measurement.

.HeightRule The rule used to determine the
height of the frame:
0 (zero) Auto (determined by paragraph

height).
1 At Least (height will be no less than .

FixedHeight).
2 Exactly (height will be exactly .

FixedHeight).
.FixedHeight If .HeightRule is 1 or 2, the height

of the frame in points or a text
measurement (1 inch = 72 points).

.PositionHorz Horizontal distance, in points or a
text measurement, from the edge
of the item specified by .
PositionHorzRel. You can also
specify "Left," "Right," "Center,"
"Inside," and "Outside" as text
arguments.

.PositionHorzRel Specifies that the horizontal
position is relative to:
0 (zero) Margin
1 Page
2 Column

.DistFromText Distance between the frame and
the text to its left, right, or both, in
points or a text measurement.

.PositionVert Vertical distance, in points or a
text measurement, from the edge
of the item specified by .
PositionVertRel. You can also
specify "Top," "Bottom," and
"Center" as text arguments.

.PositionVertRel Specifies that the vertical position
is relative to:
0 (zero) Margin
1 Page
2 Paragraph

.
DistVertFromText

Distance between the frame and
the text above, below, or both, in
points or a text measurement.

.MoveWithText If 1, the frame moves as text is
added or removed around it.

.LockAnchor If 1, the frame anchor (which
indicates where the frame will
appear in normal view) remains
fixed when the associated frame is
repositioned. A locked frame
anchor cannot be repositioned.

.RemoveFrame Removes the frame format from
the selected text or graphic.

See also
Borders and Frames Statements and Functions
FormatDefineStyleFrame
InsertFrame
RemoveFrames

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

InsertFrame Example
This example inserts a frame and then positions it in the margin to the left of the current paragraph, so the
user can type a margin note in it. If the active document is not in page layout view, Word displays a
message box asking if the user wants to switch to page layout view.
SelType 1
If ViewPage() = 0 Then

ans = MsgBox("Switch to page layout view?", \
"Insert Margin Note", 36)

If ans = - 1 Then ViewPage
End If
InsertFrame
FormatFrame .Wrap = 1, .WidthRule = 1, .FixedWidth = ".75 in", \

.PositionHorz = "Left", .PositionHorzRel = 1, \

.DistFromText = "0.13 in", .PositionVert = "0", \

.PositionVertRel = 2, .DistVertFromText = "0"
SelType 1 : FontSize 8 : Italic 1
HScroll 0

InsertFrame
Example

InsertFrame
Inserts an empty frame, or frames the selected text, graphic, or both. If there is no selection, Word inserts a
1-inch - square frame at the insertion point (the frame appears as a square in page layout view). You can
change the dimensions of the frame with FormatFrame.

See also
Borders and Frames Statements and Functions
FormatFrame
RemoveFrames

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

RemoveFrames Example
This example removes all frames from the entire document:
EditSelectAll
RemoveFrames

RemoveFrames
Example

RemoveFrames
Removes all frames in the selection. Note that borders, applied automatically when you insert a frame
around text, are not removed.

See also
Borders and Frames Statements and Functions
FormatBordersAndShading
FormatFrame
InsertFrame

ShadingPattern, ShadingPattern()
ShadingPattern Type
ShadingPattern()
The ShadingPattern statement applies one of 26 shading formats to the selected paragraphs, table cells, or
frame.
Argument Explanation

Type The shading format to apply:
0

13
1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22
10 23
11 24
12 25

The ShadingPattern() function returns the following values.
Value Explanation

0 (zero) If none of the selection is shaded
(the shading pattern is Clear)

-1 If the selection contains a mixture
of shading patterns

1 through 25 If all the selection is formatted
with the same shading pattern

See also
Borders and Frames Statements and Functions
FormatBordersAndShading

ViewBorderToolbarViewBorderToolbar
Displays the Borders toolbar if it is hidden or hides the Borders toolbar if it is displayed.

See also
Borders and Frames Statements and Functions
ViewDrawingToolbar
ViewToolbars

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Call Example
This example calls the subroutine FindName twice; each line, with or without Call, has the same effect:
Call FindName 'Transfer control to the subroutine FindName
FindName 'Transfer control to the subroutine FindName

Call
Example

[Call] [MacroName][.][SubName] [ArgumentList]
Transfers control to a subroutine in the running macro or another macro. To specify a subroutine in
another macro, use the syntax MacroName.SubName. If SubName is not specified, the Main subroutine in
MacroName runs. Call is optional; it can help distinguish subroutine names from WordBasic keywords
when you read and edit macros. Each variable in the comma-delimited ArgumentList must correspond to a
value that the subroutine being called is prepared to receive.
Note
When you call another macro, Word looks for the macro in available templates in the following order: the
template containing the Call instruction, the active template, the Normal template, and loaded global
templates. For example, suppose USER.DOT and NORMAL.DOT both contain a DisplayMessage macro.
The following macro in USER.DOT:
FileNew .Template = "Normal"
DisplayMessage

runs the DisplayMessage macro in USER.DOT, even though a document based on NORMAL.DOT is
active when the Call instruction is run.
For more information about using subroutines, including how to share variables and pass arguments
between subroutines, see Chapter 4, "Advanced WordBasic," in the Microsoft Word Developer's Kit.

See also
Branching and Control Statements and Functions
Sub...End Sub

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

For...Next Examples
This example displays five message boxes in a row, each giving the current value of count:
For count = 1 To 5

MsgBox "Current value of count is" + Str$(count)
Next count

The following example produces exactly the same effect as the previous example by decrementing the
value of count in steps of -1:
For count = 5 To 1 Step -1

MsgBox "Current value of count is" + Str$(count)
Next

The following example demonstrates how you can use WordBasic counting functions with a For...Next
loop to perform an operation on all the items in a certain category. In this example, the names of all the
bookmarks defined in the active document are stored in the array mark$().
numBookmarks = CountBookmarks()
arraySize = numBookmarks - 1
Dim mark$(arraySize)
For n = 0 To arraySize

mark$(n) = BookmarkName$(n + 1)
Next

For...Next
Example

For CounterVariable = Start To End [Step Increment]
Series of instructions

Next [CounterVariable]
Repeats the series of instructions between For and Next while increasing CounterVariable by 1 (default) or
Increment until CounterVariable is greater than End. If Start is greater than End, Increment must be a
negative value; CounterVariable decreases by Increment until it is less than End.
If you place one or more For...Next loops within another, use a unique CounterVariable for each loop, as
in the following instructions:
For I = 1 To 10

For J = 1 To 10
For K = 1 To 10
'Series of instructions
Next K

Next J
Next I

See also
Branching and Control Statements and Functions
Goto
If...Then...Else
Select Case
While...Wend

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Function...End Function Example
This macro prompts the user to type a number of degrees Fahrenheit, which is passed to the ConvertTemp
() function through the variable fahrenheit. The function converts fahrenheit to degrees Celsius, and
then the main subroutine displays this value in a message box.
Sub MAIN

On Error Resume Next
tmp$ = InputBox$("Type a Fahrenheit temperature:")
fahrenheit = Val(tmp$)
celsius = ConvertTemp(fahrenheit)
MsgBox tmp$ + " Fahrenheit =" + Str$(celsius) + " Celsius"

End Sub

Function ConvertTemp(fahrenheit)
tmp = fahrenheit
tmp = ((tmp - 32) * 5) / 9
tmp = Int(tmp)
ConvertTemp = tmp

End Function

Function...End Function
Example

Function FunctionName[$][(ArgumentList)]
Series of instructions to determine a value

FunctionName[$]
= value
End Function
Defines a function---a series of instructions that returns a single value. To return a string value, the
function name must end with a dollar sign ($). Note that unlike the names of built-in WordBasic functions,
the names of user-defined functions that do not specify ArgumentList do not end with empty parentheses;
if you include empty parentheses, an error will occur.
ArgumentList is a list of variables, separated by commas, that are passed to the function by the statement
calling the function. String variables must end with a dollar sign. ArgumentList cannot include values;
constants should be declared as variables and passed to the function through variable names.

See also
Branching and Control Statements and Functions
Sub...End Sub

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Goto Example
This macro displays a message box, with Yes, No, and Cancel buttons, asking if the user wants to continue
the macro. If the user chooses No or Cancel, the macro branches to the label bye immediately before End
Sub, and the macro ends.
Sub MAIN
ans = MsgBox("Continue macro?", 3)
If ans = 0 Or ans = 1 Then Goto bye
'Series of instructions to run if the user chooses Yes
bye:
End Sub

Goto
Example

Goto Label
Redirects a running macro from the Goto instruction to the specified Label anywhere in the same
subroutine or function. The macro continues running from the instruction that follows the label. Keep the
following in mind when placing a label in a macro:

Labels must be the first text on a line and cannot be preceded by spaces or tab characters.
Labels must be followed by a colon (:). (Do not include the colon in the Goto instruction.)
Labels that contain letters must begin with a letter and can contain letters and numbers up to a

maximum length of 40 characters, not counting the colon.
You can use a number that appears at the beginning of a line instead of a label. Line numbers are

supported primarily for compatibility with Basic programs created in older versions of the Basic
programming language that require line numbers. The line number can be as high as 32759 and does not
need a colon following it.

See also
Branching and Control Statements and Functions
For...Next
If...Then...Else
Select Case
While...Wend

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

If...Then...Else Examples
This example applies bold formatting to the entire selection if the selection is partially bold:
If Bold() = -1 Then Bold 1

The following example applies italic formatting if the selection is entirely bold; otherwise, underline
formatting is applied:
If Bold() = 1 Then Italic 1 Else Underline 1

The following example shows how you can use a compound expression as the condition (in this case,
whether the selection is both bold and italic):
If Bold() = 1 And Italic() = 1 Then ResetChar

The following example uses the full syntax available with the If conditional. The conditional could be
described as follows: "If the selection is entirely bold, make it italic. If the selection is partially bold, reset
the character formatting. Otherwise, make the selection bold."
If Bold() = 1 Then

Italic 1
ElseIf Bold() = -1 Then

ResetChar
Else

Bold 1
End If

If...Then...Else
Example

If Condition Then Instruction [Else Instruction]
If Condition1 Then

Series of instructions
[ElseIf Condition2 Then

Series of instructions]
[Else

Series
of instructions]
End If
Runs instructions conditionally. In the simplest form of the If conditional --- If Condition Then Instruction
--- the Instruction runs if Condition is true. In WordBasic, "true" means the condition evaluates to -1 and
"false" means the condition evaluates to 0 (zero).
You can write an entire If conditional on one line if you specify one condition following If and one
instruction following Then (and one instruction following Else, if included). Do not conclude this form of
the conditional with End If. Note that it is possible to specify multiple instructions using this form if you
separate the instructions with colons, as in the following conditional:
If Bold() = 1 Then Bold 0 : Italic 1

In general, if you need to specify a series of conditional instructions, the full syntax is preferable to
separating instructions with colons. With the full syntax, you can use ElseIf to include a second condition
nested within the If conditional. You can add as many ElseIf instructions to an If conditional as you need.

See also
Branching and Control Statements and Functions
For...Next
Goto
Select Case
While...Wend

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

On Error Examples
This example shows a common use of On Error Resume Next to avoid WordBasic error number 102,
"Command failed," when a user cancels a dialog box or prompt:
On Error Resume Next
A$ = InputBox$("Your name please:")

The following macro prompts the user to specify a sequential file for input (for example, a text-only file
containing a list of Word documents). If the file cannot be found, the instructions following the label
specified by On Error Goto Label suggest a reason corresponding to the error number.
Sub MAIN
On Error Goto ErrorHandler
DocName$ = InputBox$("Filename for input:", "", DocName$)
Open DocName$ For Input As #1
'Statements that use the input go here
Close #1
Goto Done 'If there is no error, skip the error handler
ErrorHandler:
Select Case Err

Case 53 : MsgBox "The file " + DocName$ + " does not exist."
Case 64 : MsgBox "The specified drive is not available."
Case 76 : MsgBox "The specified directory does not exist."
Case 102 'If the user cancels the dialog box
Case Else : MsgBox "Error" + Str$(Err) + " occurred."

End Select
Err = 0
Done:
End Sub

On Error
Example

On Error Goto Label
On Error Resume Next
On Error Goto 0
Establishes an "error handler" --- typically, a series of instructions that takes over when an error occurs.
When an error occurs in a macro that does not contain the On Error statement, an error message is
displayed and the macro quits.
This form Performs this action

On Error Goto Label Jumps from the line where the
error occurred to the specified
label. The instructions following
this label can then determine the
nature of the error (using the
special variable Err) and take some
appropriate action to correct or
resolve the problem. For more
information, see Err.

On Error Resume Next Continues running the macro from
the line that follows the line where
the error occurred and resets Err to
0 (zero). In effect, the error is
ignored.

On Error Goto 0 Disables the error trapping
established by an earlier On Error
Goto or On Error Resume Next
statement and sets Err to 0 (zero).

Once an error triggers an error handler, no further error handling occurs until Err is reset to 0 (zero).
Usually, you should place an Err = 0 instruction at the end of your error handler. Do not include Err = 0
in the middle of an error handler or you risk creating an endless loop if an error occurs within the handler.
Note that an error handler established in the main subroutine is not in effect when control passes to another
subroutine. To trap all errors, each subroutine must have its own On Error statement and error handler.
After control is returned to the main subroutine, the main On Error instruction is again in effect.
WordBasic generates errors with numbers less than 1000; Word itself generates errors with numbers 1000
or greater. Error handlers can trap both WordBasic and Word errors. However, if a Word error occurs, an
error message is displayed, and the user must respond before the macro can continue. When the user
chooses the OK button, control passes to the error handler.
For a complete list of all WordBasic and Word error messages and error numbers, see Error Messages.

See also
Branching and Control Statements and Functions
Err
Error
Goto
Select Case

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Select Case Examples
This example goes to each paragraph in the document and inserts either a bullet or a hyphen, depending on
whether the paragraph's style is "ListItem1" or "ListItem2." If a paragraph that is not formatted with either
of these styles is found, the instruction following Case Else displays a message box.
StartOfDocument
While CmpBookmarks("\Sel", "\EndOfDoc") <> 0

Select Case StyleName$()
Case "ListItem1"

ToolsBulletsNumbers .Type = 0
Case "ListItem2"

Insert "-" + Chr$(9)
Case Else

MsgBox "Not a list style"
End Select
ParaDown

Wend

The following example illustrates how Select Case may be used to evaluate numeric expressions. The
Select Case instruction generates a random number between -5 and 5, and the subsequent Case instructions
run depending on the value of that numeric expression.
Select Case Int(Rnd() * 10) - 5

Case 1,3
Print "One or three"

Case Is > 3
Print "Greater than three"

Case -5 To 0
Print "Between -5 and 0 (inclusive)"

Case Else
Print "Must be 2"

End Select

Select Case
Example

Select Case Expression
Case CaseExpression

Series of instruction(s)
[Case Else

Series
of instruction(s)]
End Select
Runs one of several series of instructions according to the value of Expression. Expression is compared
with each CaseExpression in turn. When a match is found, the instructions following that Case
CaseExpression are run, and then control passes to the instruction following End Select. If there is no
match, the instructions following Case Else are run. If there is no match and there is no Case Else
instruction, an error occurs.
The Select Case control structure is an important part of most dialog functions. For more information
about dialog functions, see Chapter 5, "Working with Custom Dialog Boxes," in the Microsoft Word
Developer's Kit.
Keep the following points in mind when using Select Case:

Use the Is keyword to compare CaseExpression with Expression using a relational operator. For
example, the instruction Case Is > 8 tests for any value greater than 8. Do not use the Is keyword without
a relational operator or an error will occur; for example, Case Is 8 generates an error.

Use the To keyword to test for a value that falls within a specified range. For example, the
instruction Case 4 To 8 tests for any value greater than or equal to 4 and less than or equal to 8.

If you include a Goto instruction to go to a label outside the Select Case control structure, an error
will occur.

See also
Branching and Control Statements and Functions
For...Next
Goto
If...Then...Else
While...Wend

Stop
Stop [SuppressMessage]
Stops a running macro. If SuppressMessage is -1, no message appears. Otherwise, Word displays a
message box that says the macro was interrupted. When Word encounters a Stop instruction in a macro
that is open in a macro-editing window, you can click the Continue button on the Macro toolbar to
continue running the macro.

See also
Branching and Control Statements and Functions
ShowVars

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

Sub...End Sub Example
In this macro, the main subroutine calls the GoBeep subroutine, passing the number of times to beep
through the variable numBeeps:
Sub MAIN

numBeeps = 3
GoBeep(numBeeps)

End Sub

Sub GoBeep(count)
For n = 1 To count

Beep
For t = 1 To 100 : Next 'Add time between beeps

Next
End Sub

If the GoBeep subroutine were in a macro named LibMacros, the call to the subroutine would be as
follows:
Sub MAIN

numBeeps = 3
LibMacros.GoBeep(numBeeps)

End Sub

For more information about using subroutines in different macros, see Chapter 4, "Advanced WordBasic,"
in the Microsoft Word Developer's Kit.

Sub...End Sub
Example

Sub SubName[(ArgumentList)]
Series of instructions

End Sub
Defines a subroutine. A subroutine is a series of instructions that can be called repeatedly from the main
subroutine and can make your macros shorter and easier to debug.
Argument Explanation

SubName The name of the subroutine.
ArgumentList A list of arguments, separated by

commas. You can then use these
arguments in the subroutine.
Values, string and numeric
variables, and array variables are
all valid arguments.

Subroutines must appear outside the main subroutine --- generally, you add subroutines after the End Sub
instruction that ends the main subroutine. You can call a subroutine not only from the macro's main
subroutine, but also from other subroutines and even other macros. For more information about using
subroutines, including how to share variables and pass arguments between subroutines, see Chapter 4,
"Advanced WordBasic," in the Microsoft Word Developer's Kit.

See also
Branching and Control Statements and Functions
Call
Function...End Function

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

While...Wend Example
This example uses the Files$() function within a While...Wend loop to insert a list of files in the current
directory whose filenames end with the .DOC filename extension. The instruction a$ = Files$("*.
DOC") returns the first filename with a .DOC extension and a$ = Files$() returns the next filename with
a .DOC extension each time the instructions within the loop run. As soon as Files$() returns an empty
string (""), indicating there are no other .DOC files in the current directory, the condition a$ <> "" is
false and Word exits the While...Wend loop.
FileNewDefault
currdir$ = Files$(".")
a$ = Files$("*.DOC")
InsertPara : Insert a$
count = 1
While a$ <> ""

count = count + 1
a$ = Files$()
InsertPara : Insert a$

Wend
StartOfDocument : Bold 1
Insert currdir$ + "*.DOC: " + Str$(count - 1) + " files"

While...Wend
Example

While Condition1
Series of instructions

Wend
Repeats a series of instructions between While and Wend while the specified condition is true. The While.
..Wend control structure is often used in WordBasic to repeat a series of instructions each time a given
piece of text or formatting is found in a Word document. For an example of this use of While...Wend, see
EditFind.

See also
Branching and Control Statements and Functions
For...Next
Goto
If...Then...Else
Select Case

DemoteListDemoteList
Demotes the selected paragraphs by one level in a multilevel list. If the selected paragraphs are formatted
as a bulleted list or as a numbered list that isn't multilevel, DemoteList increases the indent. If the selected
paragraphs are not already formatted as a numbered or bulleted list, an error occurs.

See also
Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering
PromoteList

FormatBulletDefault, FormatBulletDefault()
FormatBulletDefault [Add]
FormatBulletDefault()
The FormatBulletDefault statement adds bullets to or removes bullets from the selected paragraphs.
Argument Explanation

Add Specifies whether to add or
remove bullets:
0 (zero) Removes bullets. If the

paragraph preceding or following the
selection is not formatted as a list
paragraph, the list format in the
selection is removed along with the
bullets.

1 Adds bullets. If the paragraph
preceding the selection already has
bullets applied with the Bullets And
Numbering command (Format menu)
, the selected paragraphs are
formatted with matching bullets;
otherwise, the default settings of the
Bullets And Numbering dialog box
(Format menu) are used.

Omitted Toggles bullets.

The FormatBulletDefault() function returns the following values.
Value Explanation

0 (zero) If none of the selected paragraphs
are bulleted or numbered

-1 If the selected paragraphs are not
all bulleted, all "skipped," or all
formatted with the same level of
numbering

1 If all the selected paragraphs are
bulleted

See also
Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering
FormatNumberDefault
SkipNumbering

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

FormatBulletsAndNumbering Example
This example adds diamond-shaped bullets to the selected paragraphs and formats the paragraphs with a
hanging indent:
FormatBulletsAndNumbering .Hang = 1, .Preset = 3

FormatBulletsAndNumbering
Example

FormatBulletsAndNumbering [.Remove] [, .Hang = number] [, .Preset = number]
Adds bullets or numbers to the selected paragraphs based on the preset bullets or numbering scheme you
specify, or removes bullets and numbers. The arguments for the FormatBulletsAndNumbering statement
correspond to the options in the Bullets And Numbering dialog box (Format menu). You cannot display
this dialog box using a Dialog or Dialog() instruction.
Argument Explanation

.Remove Removes bullets or numbering
from the selection.

.Hang If 1, applies a hanging indent to
the selected paragraphs.

.Preset A number corresponding to a
bullets or numbering scheme in
the Bullets And Numbering dialog
box (Format menu).
To determine the appropriate
number, display the Bullets And
Numbering dialog box and then
select the tab with the scheme you
want. Counting left to right, values
for the preset schemes are:

1 through 6 for the schemes on the Bulleted tab.
7 through 12 for the schemes on the Numbered tab.
13 through 18 for the schemes on the Multilevel tab.

See also
Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatNumberDefault
RemoveBulletsNumbers
SkipNumbering

FormatNumberDefault, FormatNumberDefault()
FormatNumberDefault [On]
FormatNumberDefault()
The FormatNumberDefault statement adds numbers to or removes numbers from the selected paragraphs.
Argument Explanation

On Specifies whether to add or
remove numbers:
0 (zero) Removes numbers. If the

paragraph preceding or following the
selection is not formatted as a list
paragraph, the list format in the
selection is removed along with the
numbers.

1 Adds numbers. If the paragraph
preceding or following the selection
already has numbers applied with the
Bullets And Numbering command
(Format menu), the selected
paragraphs are formatted with the
same numbering scheme; otherwise,
the default settings of the Bullets And
Numbering dialog box are used.

Omitted Toggles numbers.

The FormatNumberDefault() function returns the following values.
Value Explanation

0 (zero) If none of the selected paragraphs
are numbered or bulleted

-1 If the selected paragraphs are not
all bulleted, all "skipped," or all
formatted with the same level of
numbering

1-9 If all the selected paragraphs are
numbered with the same level of
numbering in a multilevel list

10 If all the selected paragraphs are
numbered with one of the six
schemes on the Numbered tab in
the Bullets And Numbering dialog
box

11 If all the selected paragraphs are
bulleted

12 If all the selected paragraphs are
"skipped"

See also
Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
SkipNumbering

PromoteListPromoteList
Promotes the selected paragraphs by one level in a multilevel list. If the selected paragraphs are formatted
as a bulleted list or as a numbered list that isn't multilevel, PromoteList decreases the indent. If the
selected paragraphs are not already formatted as a numbered or bulleted list, an error occurs.

See also
Bullets and Numbering Statements and Functions
DemoteList
FormatBulletsAndNumbering

RemoveBulletsNumbersRemoveBulletsNumbers
Removes bullets or numbers as well as list formatting from the selected paragraphs in a bulleted or
numbered list created with the Bullets And Numbering command (Format menu). Subsequent bulleted or
numbered paragraphs start a new list and restart the numbering in the case of a numbered list.
RemoveBulletsNumbers corresponds to the Remove button in the Bullets And Numbering dialog box
(Format menu).

See also
Bullets and Numbering Statements and Functions
FormatBulletsAndNumbering
SkipNumbering

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

SkipNumbering Example
This example selects the current paragraph and uses SkipNumbering() to determine whether the paragraph
is skipped. If it is, numbering is reapplied to the paragraph.
EditGoTo "\Para"
If SkipNumbering() = 1 Then

FormatBulletsAndNumbering .Hang = 1, .Preset = 8
End If

SkipNumbering, SkipNumbering()
Example

SkipNumbering
SkipNumbering()
The SkipNumbering statement skips bullets or numbers for the selected paragraphs in a bulleted or
numbered list created with the Bullets And Numbering command (Format menu). Subsequent bulleted or
numbered paragraphs continue the current list, rather than starting a new list (and restarting the numbering
in the case of a numbered list).
The SkipNumbering() function returns the following values.
Value Explanation

0 (zero) If the selected paragraphs are not
skipped. The selected paragraphs
may or may not be part of a
bulleted or numbered list.

-1 If some of the selected paragraphs
are skipped and some are not, or
the selection includes more than
one level in a multilevel list.

1 If all the selected paragraphs are
skipped.

See also
Bullets and Numbering Statements and Functions
DemoteList
FormatBulletsAndNumbering
PromoteList
RemoveBulletsNumbers

ToolsBulletListDefault
ToolsBulletListDefault
Adds bullets and tab characters to the selected paragraphs and formats the paragraphs with a hanging
indent. Bullets are inserted as SYMBOL fields.
Note
The ToolsBulletListDefault statement corresponds to the Bulleted List button on the Toolbar in Word
version 2.x. In Word version 6.0, the Bullets button is on the Formatting toolbar and its corresponding
WordBasic statement is FormatBulletDefault.

See also
Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault
ToolsBulletsNumbers
ToolsNumberListDefault

ewc shareres, T3EWClass, $$button:WordBASICCloseewc shareres, T3EWClass, $$button:WordBASICCopyewc shareres,
T3EWClass, $$button:WordBASICPrintewc shareres, T3EWCLASS, $$+button:WordBASICGreyBar

ToolsBulletsNumbers Example
This example formats the selection as a bulleted list, with the bullet defined as character code 183 in the
Symbol font, at 10 points in size:
ToolsBulletsNumbers .Font = "Symbol", .CharNum = "183", .Type = 0, \

.Points = 10, .Hang = 1, .Indent = "0.25 in", .Replace = 0

ToolsBulletsNumbers
Example

ToolsBulletsNumbers [.Replace = number] [, .Font = text] [, .CharNum = text] [, .Type = number] [, .
FormatOutline = text] [, .AutoUpdate = number] [, .FormatNumber = number] [, .Punctuation = text]
[, .StartAt = text] [, .Points = number or text] [, .Hang = number] [, .Indent = number or text] [, .
Remove]
Sets formats for bulleted, numbered, and outline-numbered paragraphs. This statement is included for
compatibility with the previous version of Word; the arguments for ToolsBulletsNumbers correspond to
the options in the Bullets And Numbering dialog box (Tools menu) in Word version 2.x. Not every
argument applies to each type of list.
Argument Explanation

.Replace If 1, Word updates bullets only for
paragraphs that are already
bulleted, or updates numbers only
for paragraphs that are already
numbered.

.Font The font for the numbers or the
bullet character in a list.

.CharNum The character or ANSI code for
the character to use as the bullet.
Bullets are inserted as SYMBOL
fields.

.Type The type of list to create:
0 (zero) Bulleted list
1 Numbered list
2 Outline-numbered list

.FormatOutline A format for numbering outlines.
The available formats are Legal,
Outline, Sequence, Learn, and
Outline All. The Learn format
applies a format based on the first
number for each level in the
selection.

.AutoUpdate If 1, numbers are inserted as fields
that update automatically when the
sequence of paragraphs changes.

.FormatNumber Specifies a format for numbering
lists:
0 (zero) 1, 2, 3, 4
1 I, II, III, IV
2 i, ii, iii, iv
3 A, B, C, D
4 a, b, c, d

.Punctuation The separator character or
characters for numbers in a list. If
you specify one character, it
follows each number; if you
specify two characters, they
enclose each number.

.StartAt The starting number or letter for
the list.

.Points The size of the bullet character, in
points, in a bulleted list.

.Hang If 1, sets a hanging indent for the
list.

.Indent If .Hang is set to 1, the width of
the left indent in points or a text
measurement.

.Remove Removes existing bullets or
numbers.

See also
Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault
ToolsBulletListDefault
ToolsNumberListDefault

ToolsNumberListDefaultToolsNumberListDefault
Adds numbers and tab characters to the selected paragraphs and formats the paragraphs with a hanging
indent.
Note
The ToolsNumberListDefault statement corresponds to the Numbered List button on the Toolbar in Word
version 2.x. In Word version 6.0, the Numbering button is on the Formatting toolbar and its corresponding
WordBasic statement is FormatNumberDefault.

See also
Bullets and Numbering Statements and Functions
FormatBulletDefault
FormatBulletsAndNumbering
FormatNumberDefault
ToolsBulletListDefault
ToolsBulletsNumbers

What's New in WordBasic
New Macro-Editing and WordBasic Capabilities
This section describes improvements to the macro-editing environment and WordBasic capabilities that
were not available in earlier versions of Word.
New Macro Toolbar Buttons
The Macro Text Style
Global Templates
The Organizer Dialog Box
New Custom Dialog Box Capabilities
Miscellaneous Improvements

New WordBasic Statements and Functions
This section lists new or modified WordBasic statements and functions, sorted by category. Note that
statements and functions that correspond to new commands, toolbar buttons, and other new features of
Word version 6.0 are not listed.
Application Control Statements and Functions
Date and Time Functions
Disk Access Statements and Functions
Environment Statements and Functions
Menu Customization Statements and Functions
Selection Statements and Functions
String Functions
Window Control Statements and Functions
Miscellaneous Statements and Functions

New Macro Toolbar Buttons
The Macro toolbar now includes graphical buttons and a box you can use to select any open macro to run.
The following new toolbar buttons correspond to features not accessible from the Macro toolbar in earlier
versions of Word.
Click To

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:0:0:
16:0

Display the Record Macro dialog
box.

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:16:
0:16:0

Record the next command you
perform.

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:64:
0:16:0

Now allows you to step through
subroutines and functions in other
open macros.

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:128:
0:16:0

Add or remove "REM " from the
beginning of selected lines.

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:96:
0:16:0

Display the Macro dialog box
(Tools menu).

ewc shareres,
T3EWCLASS,
dllres:wordres.
dll:TBAR8:112:
0:16:0

Open the Dialog Editor.

The Macro Text Style
You can use the new Macro Text built-in style to change the default style of text in a macro-editing
window. For example, you can change the font or the tab stop settings.

Global Templates
Using the Templates command (File menu), you can make any template a global template. The macros in
a global template are available in any document window, just like macros stored in the Normal template.
This means that you can access the macros stored in a template without having to attach the template to a
document or base a document on it.

The Organizer Dialog Box
You can use the new Organizer dialog box to manage your macros. You can select any number of macros
in a template and copy or move them to another template; you can rename macros or delete them. You
display the Organizer dialog box by choosing the Organizer button in the Macro dialog box (Tools menu).

New Custom Dialog Box Capabilities
WordBasic supports four new controls for custom dialog boxes:

Drop-down list boxes are supported with the DropListBox statement.
Multiple-line text boxes are supported with a new argument for the TextBox statement.
Graphics are supported with the Picture statement.
File preview boxes are supported with the FilePreview statement.

In addition, you can now create dialog boxes that change dynamically. For example, you can create a
dialog box that updates the contents of a list box based on options the user selects elsewhere in the dialog
box. Also, there is no longer any limit to the number of controls a custom dialog box can contain. For
more information about dynamic dialog boxes, see Creating Dynamic Dialog Boxes and Dialog Function
Syntax.

Miscellaneous Improvements
The following improvements have been made to WordBasic:

The ability to turn off screen updates. You can use the ScreenUpdating statement to control
whether changes are displayed on your monitor while a macro is running. You can increase the speed of
some macros by preventing screen updates.

New date and time functions. WordBasic now includes a set of "serial number" date and time
functions compatible with Visual Basic version 3.0. In addition, the Date$() and Time$() functions have
been modified to accept serial numbers for dates and times.

Improved array handling. You can now pass array variables to subroutines and user-defined
functions. You can use the SortArray statement to sort arrays. For more information about arrays, see
SortArray and Chapter 4, "Advanced WordBasic," in the Microsoft Word Developer's Kit.

Server support for object linking and embedding (OLE) Automation. Applications that support
OLE Automation, such as Microsoft Excel version 5.0, can use OLE Automation to access Word. For more
information about OLE Automation, see Chapter 8, "Communicating with Other Applications," in the
Microsoft Word Developer's Kit.

Private settings files. Using SetPrivateProfileString and GetPrivateProfileString$(), you can create
private settings files to store variables and values. For more information about private settings files, see
SetPrivateProfileString, GetPrivateProfileString$(), and Chapter 9, "More WordBasic Techniques," in the
Microsoft Word Developer's Kit.

Document variables. Using SetDocumentVar and GetDocumentVar$(), you can store and retrieve
variables in the active document. For more information about document variables, see SetDocumentVar,
GetDocumentVar$(), and Chapter 9, "More WordBasic Techniques," in the Microsoft Word Developer's
Kit.

Form-field macros. You can attach macros to form fields so that macros are triggered either when a
form field is activated (an "on-entry" macro) or when it is no longer active (an "on-exit" macro). For more
information about form-field macros, see Chapter 9, "More WordBasic Techniques," in the Microsoft Word
Developer's Kit.

Larger variables. String variables can now hold as many as 64K characters; most string functions
now accept 64K strings. A numeric variable can be as large as 1.79E+308.

The Stop statement, used to interrupt a macro, now includes an argument to suspend the macro
without displaying an error message. Usually, when you are debugging, the error message is unnecessary.
For more information on debugging, see Chapter 6, "Debugging," in the Microsoft Word Developer's Kit.

Application Control Statements and Functions
AppClose Closes the specified application
AppCount() Returns the number of open

applications (including hidden
applications that do not appear in
the Task List)

AppGetNames Fills an array with the names of
open application windows

AppHide Hides the specified application and
removes its window name from
the Task List

AppIsRunning() Returns -1 if the specified
application is running or 0 (zero) if
it is not

AppSendMessage Sends a Windows message and its
associated parameters to the
specified application

AppShow Makes visible and activates an
application previously hidden with
AppHide and restores the
application window name to the
Task List

Date and Time Functions
Date$() Now takes a serial number as an

optional argument
DateSerial() Returns the serial number of a date

specified in the format Year,
Month, Day

DateValue() Returns the serial number of a date
specified as a string

Day() Returns the day of the month
corresponding to the specified
serial number

Days360() Returns the number of days
between two dates based on a 360-
day year (twelve 30-day months)

Hour() Returns the hours component of
the specified serial number

Minute() Returns the minutes component of
the specified serial number

Month() Returns the month component of
the specified serial number

Now() Returns a serial number that
represents the current date and
time

Second() Returns the seconds component of
the specified serial number

Time$() Now takes a serial number as an
optional argument

TimeSerial() Returns the serial number of a
time specified in the format Hour,
Minute, Second

TimeValue() Returns the serial number of a
time specified as a string

Today() Returns a serial number that
represents the current date

Weekday() Returns a number corresponding
to the day of the week on which
the date represented by the
specified serial number falls

Year() Returns the year component of the
specified serial number

Disk Access Statements and Functions
CountDirectories() Returns the number of

subdirectories contained within the
specified directory

GetAttr() Returns a number corresponding
to the file attributes set for the
specified file

GetDirectory$() Returns the name of a subdirectory
within the specified directory

SetAttr Sets file attributes for the specified
file

Environment Statements and Functions
Environ$() Returns a string associated with an

MS-DOS environment variable
GetSystemInfo Fills a string array with each

available piece of information
about the environment in which
Word is running

GetSystemInfo$() Returns one piece of information
about the environment in which
Word is running

Menu Customization Statements and Functions
CountMenuItems() Now returns the number of all

menu items on the specified menu,
not just those that differ from the
defaults

CountMenus() Returns the number of menus of
the specified type

MenuItemMacro$(),
MenuItemText$()

Now return information about any
menu item, not just those that
differ from the defaults. Note that
these functions were previously
MenuMacro$() and MenuText$().

MenuText$() Now returns the name of a
shortcut menu or a menu on the
menu bar instead of the text of a
menu item.

ToolsCustomizeMenuBar Adds, removes, or renames menus
on the menu bar.

Selection Statements and Functions
GetSelEndPos Returns the character position of

the end of the selection relative to
the start of the document

GetSelStartPos Returns the character position of
the start of the selection relative to
the start of the document

GetText$() Returns the text (unformatted)
between and including two
specified character positions

SelectCurAlignment,
SelectCurColor,
SelectCurFont,
SelectCurIndent,
SelectCurSpacing,
SelectCurTabs

Extend the selection forward until
text with different settings for
alignment, color, font, indents,
spacing, or tab stops is
encountered

SelectCurSentence Selects the entire sentence
containing the insertion point

SelectCurWord Selects the entire word containing
the insertion point

SetSelRange Selects characters between two
specified character positions
relative to the start of the
document

String Functions
CleanString$() Changes nonprinting characters

and special Word characters to
spaces (ANSI character code 32)

DOSToWin$(),
WinToDOS$()

Translate a string from the original
equipment manufacturer (OEM)
character set to the Windows
character set, and vice versa

LTrim$(),
RTrim$()

Remove leading and trailing
spaces, respectively, from a
specified string

Window Control Statements and Functions
AppMaximize,
AppMinimize,
AppMove,
AppRestore,
AppSize

Now take an optional argument for
specifying any open application
window. AppMove and AppSize
now use points as the unit of
measure. AppMaximize,
AppMinimize, and AppRestore
have corresponding functions.

AppWindowHeight,
AppWindowWidth,
DocWindowHeight,
DocWindowWidth

Set the height of a window (in
points) without affecting the
width, and vice versa. All these
statements have corresponding
functions.

AppWindowPosLeft,
AppWindowPosTop,
DocWindowPosLeft,
DocWindowPosTop

Set the horizontal position of a
window (in points) without
affecting the vertical position, and
vice versa. All these statements
have corresponding functions.

Miscellaneous Statements and Functions
CountDocumentVars(),
GetDocumentVar$(),
GetDocumentVarName$(),
SetDocumentVar

Manage document variables.

FileNameInfo$() Returns all or part of the path and
filename of the specified file.

GetPrivateProfileString$(),
SetPrivateProfileString

Store values in private settings
files; retrieve values from private
settings files.

IsTemplateDirty() Returns a value indicating whether
the active template has changed
since it was last saved. Note that
IsDirty() has changed to
IsDocumentDirty().

PathFromMacPath$() Converts a Macintosh path and
filename to a valid path and
filename for the current operating
system.

SaveTemplate Saves changes to the active
template or the global template.

ScreenUpdating Controls whether changes are
displayed on your monitor while a
macro is running.

SelectionFileName$() Returns the full path and filename
of the active document if it has
been saved. If the document has
not been saved, or if the active
window is a macro-editing
window, returns the current path
followed by a backslash (\).

SetTemplateDirty Controls whether Word recognizes
a template as changed since the
last time the template was saved.
Note that SetDirty has changed to
SetDocumentDirty.

SortArray Sorts the elements in a specified
numeric or string array
alphanumerically. This statement
is especially useful for sorting
arrays that fill list boxes in a user-
defined dialog box.

Stop Now includes an argument to
suspend the macro without
displaying an error message.

WaitCursor Changes the mouse pointer from
the current pointer to an hourglass,
or vice versa.

WordBasic Statements and Functions by Category
WordBasic keywords are listed here by category. Refer to this section when you know what you want to
do but not which commands you need to accomplish the task, or when you want to learn about related
statements and functions. Keywords appear alphabetically in each list; some keywords appear in more than
one category.
Application Control
AutoCorrect
AutoText
Basic File Input/Output
Bookmarks
Borders and Frames
Branching and Control
Bullets and Numbering
Character Formatting
Customization
Date and Time
Definitions and Declarations
Dialog Box Definition and Control
Disk Access and Management
Documents, Templates, and Add-ins
Drawing
Dynamic Data Exchange (DDE)
Editing
Environment
Fields
Finding and Replacing
Footnotes, Endnotes, and Annotations
Forms
Help
Macros
Mail Merge
Moving the Insertion Point and Selecting
Object Linking and Embedding
Outlining and Master Documents
Paragraph Formatting
Proofing
Section and Document Formatting
Strings and Numbers
Style Formatting
Tables
Tools
View
Windows

Application Control
AppActivate
AppClose
AppCount()
AppGetNames, AppGetNames()
AppHide
AppInfo$()
AppIsRunning()
AppMaximize, AppMaximize()
AppMinimize, AppMinimize()
AppMove
AppRestore, AppRestore()
AppSendMessage
AppShow
AppSize
AppWindowHeight, AppWindowHeight()
AppWindowPosLeft, AppWindowPosLeft()
AppWindowPosTop, AppWindowPosTop()
AppWindowWidth, AppWindowWidth()
ControlRun
DDEExecute
DDEInitiate()
DDEPoke
DDERequest$()
DDETerminate
DDETerminateAll
DialogEditor
ExitWindows
FileExit
GetSystemInfo, GetSystemInfo$()
MicrosoftAccess
MicrosoftExcel
MicrosoftFoxPro
MicrosoftMail
MicrosoftPowerPoint
MicrosoftProject
MicrosoftPublisher
MicrosoftSchedule
MicrosoftSystemInfo
RunPrintManager
SendKeys
Shell

AutoCorrect
GetAutoCorrect$()
ToolsAutoCorrect
ToolsAutoCorrectDays, ToolsAutoCorrectDays()
ToolsAutoCorrectInitialCaps, ToolsAutoCorrectInitialCaps()
ToolsAutoCorrectReplaceText, ToolsAutoCorrectReplaceText()
ToolsAutoCorrectSentenceCaps, ToolsAutoCorrectSentenceCaps()
ToolsAutoCorrectSmartQuotes, ToolsAutoCorrectSmartQuotes()

AutoText
AutoText
AutoTextName$()
CountAutoTextEntries()
EditAutoText
GetAutoText$()
InsertAutoText
Organizer
SetAutoText

Basic File Input/Output
Close
Eof()
Input
Input$()
Line Input
Lof()
Open
Print
Read
Seek, Seek()
Write

Bookmarks
BookmarkName$()
CmpBookmarks()
CopyBookmark
CountBookmarks()
EditBookmark
EmptyBookmark()
ExistingBookmark()
GetBookmark$()
SetEndOfBookmark
SetStartOfBookmark

Borders and Frames
BorderBottom, BorderBottom()
BorderInside, BorderInside()
BorderLeft, BorderLeft()
BorderLineStyle, BorderLineStyle()
BorderNone, BorderNone()
BorderOutside, BorderOutside()
BorderRight, BorderRight()
BorderTop, BorderTop()
FormatBordersAndShading
FormatDefineStyleBorders
FormatDefineStyleFrame
FormatFrame
InsertFrame
RemoveFrames
ShadingPattern, ShadingPattern()
ViewBorderToolbar

Branching and Control
Call
For...Next
Function...End Function
Goto
If...Then...Else
On Error
OnTime
Select Case
Stop
Sub...End Sub
While...Wend

Bullets and Numbering
DemoteList
FormatBullet
FormatBulletDefault, FormatBulletDefault()
FormatBulletsAndNumbering
FormatDefineStyleNumbers
FormatMultilevel
FormatNumber
FormatNumberDefault, FormatNumberDefault()
PromoteList
RemoveBulletsNumbers
SkipNumbering, SkipNumbering()
ToolsBulletListDefault
ToolsBulletsNumbers
ToolsNumberListDefault

Character Formatting
AllCaps, AllCaps()
Bold, Bold()
CharColor, CharColor()
CopyFormat
CountFonts()
CountLanguages()
DottedUnderline, DottedUnderline()
DoubleUnderline, DoubleUnderline()
Font, Font$()
FontSize, FontSize()
FontSizeSelect
FontSubstitution
FormatAddrFonts
FormatChangeCase
FormatDefineStyleFont
FormatDefineStyleLang
FormatFont
FormatRetAddrFonts
GrowFont
GrowFontOnePoint
Hidden, Hidden()
Italic, Italic()
Language, Language$()
NormalFontPosition
NormalFontSpacing
PasteFormat
ResetChar, ResetChar()
ShrinkFont
ShrinkFontOnePoint
SmallCaps, SmallCaps()
Strikethrough, Strikethrough()
Subscript, Subscript()
Superscript, Superscript()
SymbolFont
ToolsLanguage
Underline, Underline()
WordUnderline, WordUnderline()

Customization
AddButton
ChooseButtonImage
CopyButtonImage
CountKeys()
CountMenuItems()
CountMenus()
CountToolbarButtons()
CountToolbars()
DeleteButton
EditButtonImage
KeyCode()
KeyMacro$()
MenuItemMacro$()
MenuItemText$()
MenuMode
MenuText$()
MoveButton
MoveToolbar
NewToolbar
PasteButtonImage
RenameMenu
ResetButtonImage
SizeToolbar
ToolbarButtonMacro$()
ToolbarName$()
ToolbarState()
ToolsCustomize
ToolsCustomizeKeyboard
ToolsCustomizeMenuBar
ToolsCustomizeMenus

Date and Time
Date$()
DateSerial()
DateValue()
Day()
Days360()
Hour()
InsertDateField
InsertDateTime
InsertTimeField
Minute()
Month()
Now()
OnTime
Second()
Time$()
TimeSerial()
TimeValue()
Today()
ToolsRevisionDate()
ToolsRevisionDate$()
Weekday()
Year()

Definitions and Declarations
Declare
Dim
Let
Redim

Dialog Box Definition and Control
Begin Dialog...End Dialog
CancelButton
CheckBox
ComboBox
Dialog, Dialog()
DialogEditor
DlgControlId()
DlgEnable, DlgEnable()
DlgFilePreview, DlgFilePreview$()
DlgFocus, DlgFocus$()
DlgListBoxArray, DlgListBoxArray()
DlgSetPicture
DlgText, DlgText$()
DlgUpdateFilePreview
DlgValue, DlgValue()
DlgVisible, DlgVisible()
DropListBox
FilePreview
GetCurValues
GroupBox
InputBox$()
ListBox
MsgBox, MsgBox()
OKButton
OptionButton
OptionGroup
Picture
PushButton
Text
TextBox

Disk Access and Management
ChDefaultDir
ChDir
Connect
CopyFile
CountDirectories()
DefaultDir$()
Files$()
GetAttr()
GetDirectory$()
Kill
MkDir
Name
RmDir
SetAttr

Documents, Templates, and Add-ins
AddAddIn, AddAddIn()
AddInState, AddInState()
ClearAddIns
Converter$()
ConverterLookup()
CopyFile
CountAddIns()
CountDocumentVars()
CountFiles()
CountFoundFiles()
DeleteAddIn
DisableInput
DocClose
DocumentStatistics
FileClose
FileCloseAll
FileConfirmConversions, FileConfirmConversions()
FileFind
FileList
FileName$()
FileNameFromWindow$()
FileNameInfo$()
FileNew
FileNewDefault
FileNumber
FileOpen
FilePageSetup
FilePrint
FilePrintDefault
FilePrintPreview, FilePrintPreview()
FilePrintPreviewFullScreen
FilePrintPreviewPages, FilePrintPreviewPages()
FilePrintSetup
FileRoutingSlip
Files$()
FileSave
FileSaveAll
FileSaveAs
FileSendMail
FileSummaryInfo
FileTemplates
FoundFileName$()
GetAddInID()
GetAddInName$()
GetAttr()
GetDocumentVar$()
GetDocumentVarName$()
InsertFile

Kill
LockDocument, LockDocument()
MacroFileName$()
Name
Organizer
PathFromMacPath$()
SaveTemplate
SelectionFileName$()
SetAttr
SetDocumentVar, SetDocumentVar()
ToolsOptionsFileLocations
ToolsOptionsPrint

Drawing
DrawAlign
DrawArc
DrawBringForward
DrawBringInFrontOfText
DrawBringToFront
DrawCallout
DrawClearRange
DrawCount()
DrawCountPolyPoints()
DrawDisassemblePicture
DrawEllipse
DrawExtendSelect
DrawFlipHorizontal
DrawFlipVertical
DrawFreeformPolygon
DrawGetCalloutTextbox
DrawGetPolyPoints
DrawGetType()
DrawGroup
DrawInsertWordPicture
DrawLine
DrawNudgeDown
DrawNudgeDownPixel
DrawNudgeLeft
DrawNudgeLeftPixel
DrawNudgeRight
DrawNudgeRightPixel
DrawNudgeUp
DrawNudgeUpPixel
DrawRectangle
DrawResetWordPicture
DrawReshape
DrawRotateLeft
DrawRotateRight
DrawRoundRectangle
DrawSelect, DrawSelect()
DrawSelectNext
DrawSelectPrevious
DrawSendBackward
DrawSendBehindText
DrawSendToBack
DrawSetCalloutTextbox
DrawSetInsertToAnchor
DrawSetInsertToTextbox
DrawSetPolyPoints
DrawSetRange, DrawSetRange()
DrawSnapToGrid
DrawTextBox

DrawUngroup
DrawUnselect
FormatCallout
FormatDrawingObject
FormatPicture
InsertDrawing
SelectDrawingObjects
ToggleScribbleMode
ViewDrawingToolbar

Dynamic Data Exchange (DDE)
DDEExecute
DDEInitiate()
DDEPoke
DDERequest$()
DDETerminate
DDETerminateAll
SendKeys

Editing
AutoMarkIndexEntries
Cancel
ChangeCase, ChangeCase()
CopyText
DeleteBackWord
DeleteWord
EditClear
EditCopy
EditCut
EditFind
EditGoTo
EditLinks
EditObject
EditPaste
EditPasteSpecial
EditPicture
EditRedo
EditRepeat
EditReplace
EditTOACategory
EditUndo
ExtendMode()
Insert
InsertAddCaption
InsertAutoCaption
InsertBreak
InsertCaption
InsertCaptionNumbering
InsertColumnBreak
InsertCrossReference
InsertIndex
InsertPageBreak
InsertPageNumbers
InsertSpike
InsertSymbol
InsertTableOfAuthorities
InsertTableOfContents
InsertTableOfFigures
MarkCitation
MarkIndexEntry
MarkTableOfContentsEntry
MoveText
OK
Overtype, Overtype()
Spike
ToolsOptionsEdit

Environment
AppInfo$()
Beep
CommandValid()
DOSToWin$()
Environ$()
Err
Error
GetPrivateProfileString$()
GetProfileString$()
GetSystemInfo, GetSystemInfo$()
IsDocumentDirty()
IsExecuteOnly()
IsMacro()
IsTemplateDirty()
LockDocument, LockDocument()
MacroFileName$()
MicrosoftSystemInfo
ScreenRefresh
ScreenUpdating, ScreenUpdating()
SelInfo()
SelType, SelType()
SetDocumentDirty
SetPrivateProfileString, SetPrivateProfileString()
SetProfileString
SetTemplateDirty
ViewMenus()
WaitCursor
WinToDOS$()

Fields
CheckBoxFormField
CountMergeFields()
DoFieldClick
DropDownFormField
EnableFormField
FormFieldOptions
GetFieldData$()
GetMergeField$()
InsertDateField
InsertDateTime
InsertField
InsertFieldChars
InsertFormField
InsertMergeField
InsertPageField
InsertTimeField
LockFields
MergeFieldName$()
NextField, NextField()
PrevField, PrevField()
PutFieldData
TextFormField
ToggleFieldDisplay
ToolsManageFields
UnlinkFields
UnlockFields
UpdateFields
UpdateSource
ViewFieldCodes, ViewFieldCodes()

Finding and Replacing
EditFind
EditFindClearFormatting
EditFindFont
EditFindFound()
EditFindLang
EditFindPara
EditFindStyle
EditReplace
EditReplaceClearFormatting
EditReplaceFont
EditReplaceLang
EditReplacePara
EditReplaceStyle
RepeatFind

Footnotes, Endnotes, and Annotations
AnnotationRefFromSel$()
EditConvertAllEndnotes
EditConvertAllFootnotes
EditConvertNotes
EditSwapAllNotes
GoToAnnotationScope
InsertAnnotation
InsertFootnote
NoteOptions
ResetNoteSepOrNotice
ShowAnnotationBy
ViewAnnotations, ViewAnnotations()
ViewEndnoteArea, ViewEndnoteArea()
ViewEndnoteContNotice
ViewEndnoteContSeparator
ViewEndnoteSeparator
ViewFootnoteArea, ViewFootnoteArea()
ViewFootnoteContNotice
ViewFootnoteContSeparator
ViewFootnotes, ViewFootnotes()
ViewFootnoteSeparator

Forms
AddDropDownItem
CheckBoxFormField
ClearFormField
DropDownFormField
EnableFormField
FormFieldOptions
FormShading, FormShading()
GetFormResult(), GetFormResult$()
InsertFormField
RemoveAllDropDownItems
RemoveDropDownItem
SetFormResult
TextFormField
ToolsProtectDocument
ToolsProtectSection
ToolsUnprotectDocument

Help
Help
HelpAbout
HelpActiveWindow
HelpContents
HelpExamplesAndDemos
HelpIndex
HelpKeyboard
HelpPSSHelp
HelpQuickPreview
HelpSearch
HelpTipOfTheDay
HelpTool
HelpUsingHelp
HelpWordPerfectHelp
HelpWordPerfectHelpOptions

Macros
CommandValid()
CountMacros()
DisableAutoMacros
IsExecuteOnly()
IsMacro()
KeyMacro$()
MacroCopy
MacroDesc$()
MacroFileName$()
MacroName$()
MacroNameFromWindow$()
MenuItemMacro$()
OnTime
Organizer
PauseRecorder
REM
ShowVars
ToolbarButtonMacro$()
ToolsMacro

Mail Merge
CountMergeFields()
GetMergeField$()
InsertMergeField
MailMerge
MailMergeAskToConvertChevrons, MailMergeAskToConvertChevrons()
MailMergeCheck
MailMergeConvertChevrons, MailMergeConvertChevrons()
MailMergeCreateDataSource
MailMergeCreateHeaderSource
MailMergeDataForm
MailMergeDataSource$()
MailMergeEditDataSource
MailMergeEditHeaderSource
MailMergeEditMainDocument
MailMergeFindRecord
MailMergeFirstRecord
MailMergeFoundRecord()
MailMergeGotoRecord, MailMergeGotoRecord()
MailMergeHelper
MailMergeInsertAsk
MailMergeInsertFillIn
MailMergeInsertIf
MailMergeInsertMergeRec
MailMergeInsertMergeSeq
MailMergeInsertNext
MailMergeInsertNextIf
MailMergeInsertSet
MailMergeInsertSkipIf
MailMergeLastRecord
MailMergeMainDocumentType, MailMergeMainDocumentType()
MailMergeNextRecord
MailMergeOpenDataSource
MailMergeOpenHeaderSource
MailMergePrevRecord
MailMergeQueryOptions
MailMergeReset
MailMergeState()
MailMergeToDoc
MailMergeToPrinter
MailMergeViewData, MailMergeViewData()
MergeFieldName$()
ToolsAddRecordDefault
ToolsRemoveRecordDefault

Moving the Insertion Point and Selecting
AtEndOfDocument()
AtStartOfDocument()
Cancel
CharLeft, CharLeft()
CharRight, CharRight()
ColumnSelect
EditSelectAll
EndOfColumn, EndOfColumn()
EndOfDocument, EndOfDocument()
EndOfLine, EndOfLine()
EndOfRow, EndOfRow()
EndOfWindow, EndOfWindow()
ExtendMode()
ExtendSelection
GetSelEndPos()
GetSelStartPos()
GetText$()
GoBack
GoToAnnotationScope
GoToHeaderFooter
GoToNextItem
GoToPreviousItem
HLine
HPage
HScroll, HScroll()
Insert
LineDown, LineDown()
LineUp, LineUp()
NextCell, NextCell()
NextField, NextField()
NextObject
NextPage, NextPage()
NextWindow
OtherPane
PageDown, PageDown()
PageUp, PageUp()
ParaDown, ParaDown()
ParaUp, ParaUp()
PrevCell, PrevCell()
PrevField, PrevField()
PrevObject
PrevPage, PrevPage()
PrevWindow
SelectCurAlignment
SelectCurColor
SelectCurFont
SelectCurIndent
SelectCurSentence

SelectCurSpacing
SelectCurTabs
SelectCurWord
SelType, SelType()
SentLeft, SentLeft()
SentRight, SentRight()
SetSelRange
ShrinkSelection
StartOfColumn, StartOfColumn()
StartOfDocument, StartOfDocument()
StartOfLine, StartOfLine()
StartOfRow, StartOfRow()
StartOfWindow, StartOfWindow()
TableSelectColumn
TableSelectRow
TableSelectTable
VLine
VPage
VScroll, VScroll()
WordLeft, WordLeft()
WordRight, WordRight()

Object Linking and Embedding
ActivateObject
ConvertObject
EditLinks
EditObject
EditPasteSpecial
EditPicture
FileClosePicture
InsertChart
InsertDatabase
InsertEquation
InsertExcelTable
InsertObject
InsertPicture
InsertSound
InsertWordArt

Outlining and Master Documents
CreateSubdocument
DemoteToBodyText
InsertSubdocument
MergeSubdocument
OpenSubdocument
OutlineCollapse
OutlineDemote
OutlineExpand
OutlineLevel()
OutlineMoveDown
OutlineMoveUp
OutlinePromote
OutlineShowFirstLine, OutlineShowFirstLine()
OutlineShowFormat
RemoveSubdocument
ShowAllHeadings
ShowHeadingNumber
SplitSubdocument
ViewMasterDocument, ViewMasterDocument()
ViewOutline, ViewOutline()
ViewToggleMasterDocument

Paragraph Formatting
CenterPara, CenterPara()
CloseUpPara
CopyFormat
FormatDefineStylePara
FormatDefineStyleTabs
FormatDropCap
FormatParagraph
FormatTabs
HangingIndent
Indent
InsertPara
JustifyPara, JustifyPara()
LeftPara, LeftPara()
NextTab()
OpenUpPara
ParaKeepLinesTogether, ParaKeepLinesTogether()
ParaKeepWithNext, ParaKeepWithNext()
ParaPageBreakBefore, ParaPageBreakBefore()
ParaWidowOrphanControl, ParaWidowOrphanControl()
PasteFormat
PrevTab()
ResetPara, ResetPara()
RightPara, RightPara()
SpacePara1, SpacePara1()
SpacePara15, SpacePara15()
SpacePara2, SpacePara2()
TabLeader$()
TabType()
UnHang
UnIndent

Proofing
CountToolsGrammarStatistics()
ToolsGetSpelling, ToolsGetSpelling()
ToolsGetSynonyms, ToolsGetSynonyms()
ToolsGrammar
ToolsGrammarStatisticsArray
ToolsHyphenation
ToolsHyphenationManual
ToolsOptionsGrammar
ToolsOptionsSpelling
ToolsSpelling
ToolsSpellSelection
ToolsThesaurus

Section and Document Formatting
CloseViewHeaderFooter
FormatAutoFormat
FormatColumns
FormatHeaderFooterLink
FormatHeadingNumber
FormatHeadingNumbering
FormatPageNumber
FormatSectionLayout
GoToHeaderFooter
InsertSectionBreak
ShowNextHeaderFooter
ShowPrevHeaderFooter
ToggleHeaderFooterLink
ToggleMainTextLayer
TogglePortrait
ToolsOptionsAutoFormat
ViewFooter, ViewFooter()
ViewHeader, ViewHeader()

Strings and Numbers
Abs()
Asc()
Chr$()
CleanString$()
InStr()
Int()
LCase$()
Left$()
Len()
LTrim$()
Mid$()
Right$()
Rnd()
RTrim$()
Selection$()
Sgn()
SortArray
Str$()
String$()
UCase$()
Val()

Style Formatting
CountStyles()
FormatDefineStyleBorders
FormatDefineStyleFont
FormatDefineStyleFrame
FormatDefineStyleLang
FormatDefineStyleNumbers
FormatDefineStylePara
FormatDefineStyleTabs
FormatStyle
FormatStyleGallery
NormalStyle
Organizer
Style
StyleDesc$()
StyleName$()

Tables
FieldSeparator$, FieldSeparator$()
InsertExcelTable
NextCell, NextCell()
PrevCell, PrevCell()
TableAutoFormat
TableAutoSum
TableColumnWidth
TableDeleteCells
TableDeleteColumn
TableDeleteRow
TableFormula
TableGridlines, TableGridlines()
TableHeadings, TableHeadings()
TableInsertCells
TableInsertColumn
TableInsertRow
TableInsertTable
TableMergeCells
TableRowHeight
TableSelectColumn
TableSelectRow
TableSelectTable
TableSort
TableSortAToZ
TableSortZToA
TableSplit
TableSplitCells
TableToText
TableUpdateAutoFormat
TextToTable

Tools
ToolsAdvancedSettings
ToolsCalculate, ToolsCalculate()
ToolsCompareVersions
ToolsCreateEnvelope
ToolsCreateLabels
ToolsCustomize
ToolsHyphenation
ToolsHyphenationManual
ToolsLanguage
ToolsMergeRevisions
ToolsOptions
ToolsOptionsAutoFormat
ToolsOptionsCompatibility
ToolsOptionsEdit
ToolsOptionsFileLocations
ToolsOptionsGeneral
ToolsOptionsPrint
ToolsOptionsRevisions
ToolsOptionsSave
ToolsOptionsUserInfo
ToolsOptionsView
ToolsProtectDocument
ToolsProtectSection
ToolsRepaginate
ToolsReviewRevisions
ToolsRevisionAuthor$()
ToolsRevisionDate()
ToolsRevisionDate$()
ToolsRevisions
ToolsRevisionType()
ToolsShrinkToFit
ToolsUnprotectDocument
ToolsWordCount

View
ClosePreview
CloseViewHeaderFooter
FilePrintPreview, FilePrintPreview()
FilePrintPreviewFullScreen
FilePrintPreviewPages, FilePrintPreviewPages()
Magnifier, Magnifier()
ShowAll, ShowAll()
ShowNextHeaderFooter
ShowPrevHeaderFooter
ToggleFull
TogglePortrait
ToolsOptionsView
ViewAnnotations, ViewAnnotations()
ViewBorderToolbar
ViewDraft, ViewDraft()
ViewDrawingToolbar
ViewEndnoteArea, ViewEndnoteArea()
ViewEndnoteContNotice
ViewEndnoteContSeparator
ViewEndnoteSeparator
ViewFieldCodes, ViewFieldCodes()
ViewFooter, ViewFooter()
ViewFootnoteArea, ViewFootnoteArea()
ViewFootnoteContNotice
ViewFootnoteContSeparator
ViewFootnotes, ViewFootnotes()
ViewFootnoteSeparator
ViewHeader, ViewHeader()
ViewMasterDocument, ViewMasterDocument()
ViewMenus()
ViewNormal, ViewNormal()
ViewOutline, ViewOutline()
ViewPage, ViewPage()
ViewRibbon, ViewRibbon()
ViewRuler, ViewRuler()
ViewStatusBar, ViewStatusBar()
ViewToggleMasterDocument
ViewToolbars
ViewZoom
ViewZoom100
ViewZoom200
ViewZoom75
ViewZoomPageWidth
ViewZoomWholePage

Windows
Activate
AppActivate
AppClose
AppCount()
AppGetNames, AppGetNames()
AppHide
AppMaximize, AppMaximize()
AppMinimize, AppMinimize()
AppMove
AppRestore, AppRestore()
AppShow
AppSize
AppWindowHeight, AppWindowHeight()
AppWindowPosLeft, AppWindowPosLeft()
AppWindowPosTop, AppWindowPosTop()
AppWindowWidth, AppWindowWidth()
ClosePane
CountWindows()
DocClose
DocMaximize, DocMaximize()
DocMinimize, DocMinimize()
DocMove
DocRestore
DocSize
DocSplit, DocSplit()
DocWindowHeight, DocWindowHeight()
DocWindowPosLeft, DocWindowPosLeft()
DocWindowPosTop, DocWindowPosTop()
DocWindowWidth, DocWindowWidth()
ExitWindows
FileNameFromWindow$()
HelpActiveWindow
IsMacro()
NextWindow
OtherPane
PrevWindow
Window()
WindowArrangeAll
WindowList
WindowName$()
WindowNewWindow
WindowNumber
WindowPane()

Error Messages
When you run a macro and an error occurs, you can get more information by pressing F1 or choosing the
Help button in the error message box. The following lists, the first for WordBasic error messages and the
second for Word error messages, includes numbers you can use when trapping errors. For more
information on error trapping, see On Error statement.

WordBasic Error Messages
Error # Message

5 Illegal function call
6 Overflow
7 Out of memory
9 Subscript out of range
11 Division by zero
14 Out of string space
22 Invalid array dimension
24 Bad parameter
25 Out of memory (stack space)
26 Dialog needs End Dialog or a push button
28 Directory already exists
39 CASE ELSE expected
51 Internal error
52 Bad file name or number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O error
62 Input past end of file
64 Bad file name
67 Too many files
74 Rename across disks
75 Path/File access error
76 Path not found
100 Syntax error
101 Comma missing
102 Command failed
103 Dialog record variable expected
104 ELSE without IF
105 END IF without IF
109 INPUT missing
111 Expression too complex
112 Identifier expected
113 Duplicate label
114 Label not found
115 Right parenthesis missing
116 Argument-count mismatch
117 Missing NEXT or WEND
118 Nested SUB or FUNCTION definitions
119 NEXT without FOR
120 Array already dimensioned
122 Type mismatch
123 Undefined dialog record field

124 Unknown Command, Subroutine, or Function
125 Unexpected end of macro
126 WEND without WHILE
127 Wrong number of dimensions
129 Too many nested control structures
130 SELECT without END SELECT
131 Illegal REDIM to dialog record
132 External call caused string overflow
133 Wrong number or type of arguments for DLL call
134 An argument to a function contained an illegal date or time.
137 The specified path is not a valid path option.
138 The current selection cannot be modified by this command.
139 Only one user dialog may be up at any time.
140 Dialog control identifier does not match any current control.
141 The () statement is not available on this dialog control type.
142 Specified application is not currently running
143

